Multi-platform auto-vectorization

被引:0
|
作者
Nuzman, Dorit [1 ]
Henderson, Richard [2 ]
机构
[1] IBM Haifa Res Lab, HiPEAC Member, Univ Campus,Carmel Mt, IL-31905 Haifa, Israel
[2] Red Hat, Mouutain View, CA 94041 USA
关键词
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The recent proliferation of the Single Instruction Multiple Data (SIMD) model has lead to a wide variety of implementations. These have been incorporated into many platforms, from gaming machines and DSPs to general purpose architectures. In this paper we present an automatic vectorizer as implemented in GCC, the most multi-targetable compiler available today. We discuss the considerations involved in developing a multi-platform vectorization technology, and demonstrate how our vectorization scheme is suited to a variety of SIMD architectures. Experiments on four different SIMD platforms demonstrate that our automatic vectorization scheme is able to efficiently support individual platforms, achieving significant speedups on key kernels.
引用
收藏
页码:281 / +
页数:2
相关论文
共 50 条
  • [1] Auto-vectorization of interleaved data for SIMD
    Nuzman, Dorit
    Rosen, Ira
    Zaks, Ayal
    ACM SIGPLAN NOTICES, 2006, 41 (06) : 132 - 143
  • [2] Auto-vectorization for Image Processing DSLs
    Reiche, Oliver
    Kobylko, Christof
    Hannig, Frank
    Teich, Juergen
    ACM SIGPLAN NOTICES, 2017, 52 (05) : 21 - 30
  • [3] Compiler Auto-Vectorization with Imitation Learning
    Mendis, Charith
    Yang, Cambridge
    Pu, Yewen
    Amarasinghe, Saman
    Carbin, Michael
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [4] FlexVec: Auto-vectorization for irregular loops
    Baghsorkhi S.S.
    Vasudevan N.
    Wu Y.
    ACM SIGPLAN Notices, 2016, 51 (06): : 697 - 710
  • [5] FlexVec: Auto-Vectorization for Irregular Loops
    Baghsorkhi, Sara S.
    Vasudevan, Nalini
    Wu, Youfeng
    ACM SIGPLAN NOTICES, 2016, 51 (06) : 697 - 710
  • [6] SuperGraph-SLP Auto-Vectorization
    Porpodas, Vasileios
    2017 26TH INTERNATIONAL CONFERENCE ON PARALLEL ARCHITECTURES AND COMPILATION TECHNIQUES (PACT), 2017, : 330 - 342
  • [7] Auto-vectorization: recent development and prospect
    Feng J.
    He Y.
    Tao Q.
    Tongxin Xuebao/Journal on Communications, 2022, 43 (03): : 180 - 195
  • [8] An approach for analyzing auto-vectorization potential of emerging workloads
    Yazdanpanah, Fahimeh
    MICROPROCESSORS AND MICROSYSTEMS, 2017, 49 : 139 - 149
  • [9] A Code Generation Approach for Auto-Vectorization in the SPADE Compiler
    Wang, Huayong
    Andrade, Henrique
    Gedik, Bugra
    Wu, Kun-Lung
    LANGUAGES AND COMPILERS FOR PARALLEL COMPUTING, 2010, 5898 : 383 - 390
  • [10] Study of auto-vectorization based on scan-thinning algorithm
    Liu, Renwu
    Li, Yan
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2012, 41 (02): : 309 - 314