BIRATIONAL AUTOMORPHISM GROUPS AND THE MOVABLE CONE THEOREM FOR CALABI-YAU MANIFOLDS OF WEHLER TYPE VIA UNIVERSAL COXETER GROUPS
被引:24
|
作者:
Cantat, Serge
论文数: 0引用数: 0
h-index: 0
机构:
CNRS, DMA, ENS ULM, UMR 8553, F-75230 Paris 05, FranceCNRS, DMA, ENS ULM, UMR 8553, F-75230 Paris 05, France
Cantat, Serge
[1
]
Oguiso, Keiji
论文数: 0引用数: 0
h-index: 0
机构:
Osaka Univ, Dept Math, Toyonaka, Osaka 5600043, Japan
Korea Inst Adv Study, Seoul 130722, South KoreaCNRS, DMA, ENS ULM, UMR 8553, F-75230 Paris 05, France
Oguiso, Keiji
[2
,3
]
机构:
[1] CNRS, DMA, ENS ULM, UMR 8553, F-75230 Paris 05, France
[2] Osaka Univ, Dept Math, Toyonaka, Osaka 5600043, Japan
[3] Korea Inst Adv Study, Seoul 130722, South Korea
Thanks to the theory of Coxeter groups, we produce the first family of Calabi-Yau manifolds X of arbitrary dimension n, for which Bir(X) is infinite and the Kawamata-Morrison movable cone conjecture is satisfied. For this family, the movable cone is explicitly described; it's fractal nature is related to limit sets of Kleinian groups and to the Apollonian Gasket. Then, we produce explicit examples of (biregular) automorphisms with positive entropy on some Calabi-Yau varieties.
机构:
Osaka Univ, Dept Math, Toyonaka, Osaka 5600043, Japan
Korea Inst Adv Study, Seoul 130722, South KoreaOsaka Univ, Dept Math, Toyonaka, Osaka 5600043, Japan
机构:
UNIV CALIF BERKELEY LAWRENCE BERKELEY LAB,THEORET PHYS RES LABS,BERKELEY,CA 94720UNIV CALIF BERKELEY LAWRENCE BERKELEY LAB,THEORET PHYS RES LABS,BERKELEY,CA 94720
GIVEON, A
SMIT, DJ
论文数: 0引用数: 0
h-index: 0
机构:
UNIV CALIF BERKELEY LAWRENCE BERKELEY LAB,THEORET PHYS RES LABS,BERKELEY,CA 94720UNIV CALIF BERKELEY LAWRENCE BERKELEY LAB,THEORET PHYS RES LABS,BERKELEY,CA 94720
机构:
Hangzhou Normal Univ, Dept Math, Hangzhou 310036, Zhejiang, Peoples R ChinaHangzhou Normal Univ, Dept Math, Hangzhou 310036, Zhejiang, Peoples R China
Yu, Xiaolan
Wang, Xingting
论文数: 0引用数: 0
h-index: 0
机构:
Howard Univ, Dept Math, Washington, DC 20059 USAHangzhou Normal Univ, Dept Math, Hangzhou 310036, Zhejiang, Peoples R China