On the time fractional heat equation with obstacle

被引:1
|
作者
Alberini, C. [1 ]
Capitanelli, R. [1 ]
D'Ovidio, M. [1 ]
Vita, S. Finzi [2 ]
机构
[1] Sapienza Univ Roma, Dipartimento SBAI, Rome, Italy
[2] Sapienza Univ Roma, Dipartimento Matemat, Rome, Italy
关键词
Degenerate parabolic problems; Finite difference methods; Free boundary problems; Fractional derivatives and integrals;
D O I
10.1016/j.cam.2022.114470
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a Caputo time fractional degenerate diffusion equation which we prove to be equivalent to the fractional parabolic obstacle problem, showing that its solution evolves for any alpha is an element of (0, 1) to the same stationary state, the solution of the classic elliptic obstacle problem. The only thing which changes with alpha is the convergence speed. We also study the problem from the numerical point of view, comparing some finite different approaches, and showing the results of some tests. These results extend what recently proved in [ 1] for the case alpha = 1. (C) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Solutions of Fuzzy Time Fractional Heat Equation
    Cetinkaya, S.
    Demir, A.
    JOURNAL OF MATHEMATICAL EXTENSION, 2022, 16 (06)
  • [2] Generalized solutions for time ψ-fractional heat equation
    Benmerrous, Abdelmjid
    Chadli, Lalla Saadia
    Moujahid, Abdelaziz
    Elomari, M'hamed
    Melliani, Said
    FILOMAT, 2023, 37 (27) : 9327 - 9337
  • [3] On integrability of the time fractional nonlinear heat conduction equation
    Liu, Jian-Gen
    Yang, Xiao-Jun
    Feng, Yi-Ying
    JOURNAL OF GEOMETRY AND PHYSICS, 2019, 144 : 190 - 198
  • [4] Tychonoff Solutions of the Time-Fractional Heat Equation
    Ascione, Giacomo
    FRACTAL AND FRACTIONAL, 2022, 6 (06)
  • [5] Conformable fractional heat equation with fractional translation symmetry in both time and space
    W S Chung
    A Gungor
    J K ?í?
    B C Lütfüo?lu
    H Hassanabadi
    Chinese Physics B, 2023, 32 (04) : 155 - 159
  • [6] Conformable fractional heat equation with fractional translation symmetry in both time and space
    Chung, W. S.
    Gungor, A.
    Kriz, J.
    Lutfuoglu, B. C.
    Hassanabadi, H.
    CHINESE PHYSICS B, 2023, 32 (04)
  • [7] Integral Transform Method for Solving Time Fractional Systems and Fractional Heat Equation
    Aghili, A.
    Masomi, M. R.
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2014, 32 (01): : 305 - 322
  • [8] On Fractional Heat Equation
    Anatoly N. Kochubei
    Yuri Kondratiev
    José Luís da Silva
    Fractional Calculus and Applied Analysis, 2021, 24 : 73 - 87
  • [9] ON FRACTIONAL HEAT EQUATION
    Kochubei, Anatoly N.
    Kondratiev, Yuri
    da Silva, Jose Luis
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2021, 24 (01) : 73 - 87
  • [10] Fractional Tikhonov Regularization Method for a Time-Fractional Backward Heat Equation with a Fractional Laplacian
    Wang Jianlin
    Xiong Xiangtuan
    Cao Xiaoxiao
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2018, 31 (04): : 333 - 342