Predicting Stock Price Using Two-Stage Machine Learning Techniques

被引:37
|
作者
Zhang, Jun [1 ]
Li, Lan [1 ]
Chen, Wei [1 ]
机构
[1] Capital Univ Econ & Business, Sch Management & Engn, Beijing, Peoples R China
基金
中国国家自然科学基金; 国家教育部科学基金资助;
关键词
Fusion models; Adaptive neuro fuzzy inference system (ANFIS); Stock market; Support vector regression (SVR); NEURAL-NETWORK; ENSEMBLE METHODS; MODEL; FUSION; ANFIS; COMBINATION; SELECTION; SYSTEM;
D O I
10.1007/s10614-020-10013-5
中图分类号
F [经济];
学科分类号
02 ;
摘要
Stock market forecasting is considered to be a challenging topic among time series forecasting. This study proposes a novel two-stage ensemble machine learning model named SVR-ENANFIS for stock price prediction by combining features of support vector regression (SVR) and ensemble adaptive neuro fuzzy inference system (ENANFIS). In the first stage, the future values of technical indicators are forecasted by SVR. In the second stage, ENANFIS is utilized to forecast the closing price based on prediction results of first stage. Finally, the proposed model SVR-ENANFIS is tested on 4 securities randomly selected from the Shanghai and Shenzhen Stock Exchanges with data collected from 2012 to 2017, and the predictions are completed 1-10, 15 and 30 days in advance. The experimental results show that the proposed model SVR-ENANFIS has superior prediction performance than single-stage model ENANFIS and several two-stage models such as SVR-Linear, SVR-SVR, and SVR-ANN.
引用
收藏
页码:1237 / 1261
页数:25
相关论文
共 50 条
  • [1] Predicting Stock Price Using Two-Stage Machine Learning Techniques
    Jun Zhang
    Lan Li
    Wei Chen
    Computational Economics, 2021, 57 : 1237 - 1261
  • [2] Stock Price Forecasting Using Machine Learning Techniques
    Ustali, Nesrin Koc
    Tosun, Nedret
    Tosun, Omur
    ESKISEHIR OSMANGAZI UNIVERSITESI IIBF DERGISI-ESKISEHIR OSMANGAZI UNIVERSITY JOURNAL OF ECONOMICS AND ADMINISTRATIVE SCIENCES, 2021, 16 (01): : 1 - 16
  • [3] STOCK PRICE PREDICTION USING MACHINE LEARNING TECHNIQUES
    Sarode, Sumeet
    Tolani, Harsha G.
    Kak, Prateek
    Lifna, C. S.
    PROCEEDINGS OF THE 2019 INTERNATIONAL CONFERENCE ON INTELLIGENT SUSTAINABLE SYSTEMS (ICISS 2019), 2019, : 177 - 181
  • [4] Two-stage credit rating prediction using machine learning techniques
    Wu, Hsu-Che
    Hu, Ya-Han
    Huang, Yen-Hao
    KYBERNETES, 2014, 43 (07) : 1098 - 1113
  • [5] Predicting Stock Prices Using Machine Learning Techniques
    Karthikeyan, C.
    Nisha, Sahaya Anselin A.
    Anandan, P.
    Prabha, R.
    Mohan, D.
    Babu, Vijendra D.
    PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON INVENTIVE COMPUTATION TECHNOLOGIES (ICICT 2021), 2021, : 1184 - 1188
  • [6] Predicting stock and stock price index movement using Trend Deterministic Data Preparation and machine learning techniques
    Patel, Jigar
    Shah, Sahil
    Thakkar, Priyank
    Kotecha, K.
    EXPERT SYSTEMS WITH APPLICATIONS, 2015, 42 (01) : 259 - 268
  • [7] Predicting Stock Price Bubbles in China Using Machine Learning
    Wang, Yunxi
    Yampaka, Tongjai
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (11) : 415 - 425
  • [8] Predicting Stock Price Bubbles in China Using Machine Learning
    Wang, Yunxi
    Yampaka, Tongjai
    International Journal of Advanced Computer Science and Applications, 2024, 15 (11): : 415 - 425
  • [9] PREDICTING THE PROJECTILE VELOCITY OF A TWO-STAGE GAS GUN USING MACHINE LEARNING
    Shojaei, Pouya
    Trabia, Mohamed
    O'Toole, Brendan
    Jennings, Richard
    PROCEEDINGS OF ASME 2022 PRESSURE VESSELS AND PIPING CONFERENCE, PVP2022, VOL 3, 2022,
  • [10] Stock Closing Price Prediction using Machine Learning Techniques
    Vijh, Mehar
    Chandola, Deeksha
    Tikkiwal, Vinay Anand
    Kumar, Arun
    INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND DATA SCIENCE, 2020, 167 : 599 - 606