Possible global minimum lattice configurations for Thomson's problem of charges on a sphere

被引:92
|
作者
Altschuler, EL
Williams, TJ
Ratner, ER
Tipton, R
Stong, R
Dowla, F
Wooten, F
机构
[1] LOS ALAMOS NATL LAB, LOS ALAMOS, NM 87545 USA
[2] STANFORD UNIV, DEPT APPL PHYS, STANFORD, CA 94305 USA
[3] UNIV HOUSTON, DEPT MATH, HOUSTON, TX 77004 USA
[4] UNIV CALIF DAVIS LIVERMORE, DEPT APPL SCI, LIVERMORE, CA 94551 USA
关键词
D O I
10.1103/PhysRevLett.78.2681
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
What configuration of N point charges on a conducting sphere minimizes the Coulombic energy? J.J. Thomson posed this question in 1904. For N less than or equal to 112, numerical methods have found apparent global minimum-energy configurations; but the number of local minima appears to grow exponentially with N, making many such methods impractical. Here we describe a topological/numerical procedure that we believe gives the global energy minimum lattice configuration for N of the form N = 10(m(2) + n(2) + mn) + 2 (m, n positive integers). For those N with more than one lattice, we give a rule to choose the minimum one.
引用
收藏
页码:2681 / 2685
页数:5
相关论文
共 11 条