Resting brain dynamics at different timescales capture distinct aspects of human behavior

被引:179
|
作者
Liegeois, Raphael [1 ,2 ,3 ,4 ]
Li, Jingwei [1 ,2 ]
Kong, Ru [1 ,2 ]
Orban, Csaba [1 ,2 ]
Van De Ville, Dimitri [3 ,4 ]
Ge, Tian [5 ,6 ]
Sabuncu, Mert R. [7 ]
Yeo, B. T. Thomas [1 ,2 ,6 ,8 ,9 ]
机构
[1] Natl Univ Singapore, Dept Elect & Comp Engn, Clin Imaging Res Ctr, Inst Hlth 1, Singapore 117583, Singapore
[2] Natl Univ Singapore, Memory Networks Program, Singapore 117583, Singapore
[3] Ecole Polytech Fed Lausanne, Inst Bioengn, Ctr Neuroprosthet, CH-1015 Lausanne, Switzerland
[4] Univ Geneva, Dept Radiol & Med Informat, CH-1205 Geneva, Switzerland
[5] Massachusetts Gen Hosp, Psychiat & Neurodev Genet Unit, Ctr Genom Med, Boston, MA 02114 USA
[6] Massachusetts Gen Hosp, Athinoula A Martinos Ctr Biomed Imaging, Charlestown, MA 02129 USA
[7] Cornell Univ, Sch Elect & Comp Engn, Ithaca, NY 14853 USA
[8] Duke NUS Med Sch, Ctr Cognit Neurosci, Singapore 169857, Singapore
[9] Natl Univ Singapore, NUS Grad Sch Integrat Sci & Engn, Singapore 119077, Singapore
基金
瑞士国家科学基金会;
关键词
FUNCTIONAL CONNECTIVITY; DEFAULT NETWORK; STATE FMRI; FLUCTUATIONS; ASSOCIATION; SIGNATURE; PATTERNS; MODE; MRI;
D O I
10.1038/s41467-019-10317-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Linking human behavior to resting-state brain function is a central question in systems neuroscience. In particular, the functional timescales at which different types of behavioral factors are encoded remain largely unexplored. The behavioral counterparts of static functional connectivity (FC), at the resolution of several minutes, have been studied but behavioral correlates of dynamic measures of FC at the resolution of a few seconds remain unclear. Here, using resting-state fMRI and 58 phenotypic measures from the Human Connectome Project, we find that dynamic FC captures task-based phenotypes (e.g., processing speed or fluid intelligence scores), whereas self-reported measures (e.g., loneliness or life satisfaction) are equally well explained by static and dynamic FC. Furthermore, behaviorally relevant dynamic FC emerges from the interconnections across all resting-state networks, rather than within or between pairs of networks. Our findings shed new light on the timescales of cognitive processes involved in distinct facets of behavior.
引用
收藏
页数:9
相关论文
共 47 条
  • [1] Resting brain dynamics at different timescales capture distinct aspects of human behavior
    Raphaël Liégeois
    Jingwei Li
    Ru Kong
    Csaba Orban
    Dimitri Van De Ville
    Tian Ge
    Mert R. Sabuncu
    B. T. Thomas Yeo
    Nature Communications, 10
  • [2] Distinct criticality of phase and amplitude dynamics in the resting brain
    Daffertshofer, Andreas
    Ton, Robert
    Kringelbach, Morten L.
    Woolrich, Mark
    Deco, Gustavo
    NEUROIMAGE, 2018, 180 : 442 - 447
  • [3] Multiple Intrinsic Timescales Govern Distinct Brain States in Human Sleep
    Lendner, Janna D.
    Lin, Jack J.
    Larsson, Pal G.
    Helfrich, Randolph F.
    JOURNAL OF NEUROSCIENCE, 2024, 44 (42):
  • [4] Glucose oxidation in normal human brain across different resting states
    Hyder, F.
    JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2016, 36 : 56 - 57
  • [5] MURINE CFTR BEHAVIOR DIFFERS FROM HUMAN CFTR IN DISTINCT ASPECTS
    Cui, G.
    Prince, C.
    McCarty, N. A.
    PEDIATRIC PULMONOLOGY, 2014, 49 : 226 - 226
  • [6] Neuronal dynamics enable the functional differentiation of resting state networks in the human brain
    Marino, Marco
    Liu, Quanying
    Samogin, Jessica
    Tecchio, Franca
    Cottone, Carlo
    Mantini, Dante
    Porcaro, Camillo
    HUMAN BRAIN MAPPING, 2019, 40 (05) : 1445 - 1457
  • [7] Distinct Structures and Dynamics of Chromatosomes with Different Human Linker Histone Isoforms
    Zhou, Bing-Rui
    Feng, Hanqiao
    Kale, Seyit
    Fox, Tara
    Khant, Htet
    de Val, Natalia
    Ghirlando, Rodolfo
    Panchenko, Anna R.
    Bai, Yawen
    MOLECULAR CELL, 2021, 81 (01) : 166 - +
  • [8] fMRI resting state networks define distinct modes of long-distance interactions in the human brain
    De Luca, M
    Beckmann, CF
    De Stefano, N
    Matthews, PM
    Smith, SM
    NEUROIMAGE, 2006, 29 (04) : 1359 - 1367
  • [9] Detecting spatiotemporal nonlinear dynamics in resting state of human brain based on fMRI datasets
    Xie, Xiaoping
    Cao, Zhitong
    Weng, Xuchu
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 205 (01) : 19 - 25
  • [10] TMS-EEG for Probing Distinct Modes of Neural Dynamics in the Human Brain
    Kitajo, Keiichi
    Okazaki, Yuka O.
    ADVANCES IN COGNITIVE NEURODYNAMICS (V), 2016, : 211 - 216