Scaling solutions for connectivity and conductivity of continuous random networks

被引:8
|
作者
Galindo-Torres, S. A. [1 ,2 ]
Molebatsi, T. [2 ]
Kong, X. -Z. [2 ,3 ]
Scheuermann, A. [1 ,2 ]
Bringemeier, D. [1 ,4 ]
Li, L. [2 ]
机构
[1] Univ Queensland, Sch Civil Engn, Geotech Engn Ctr, Brisbane, Qld 4072, Australia
[2] Univ Queensland, Sch Civil Engn, Res Grp Complex Proc Geosyst, Brisbane, Qld 4072, Australia
[3] ETH, Inst Geophys, CH-8092 Zurich, Switzerland
[4] Golder Associates, Milton, Qld, Australia
来源
PHYSICAL REVIEW E | 2015年 / 92卷 / 04期
基金
澳大利亚研究理事会;
关键词
POROUS-MEDIA; PERCOLATION; TRANSPORT;
D O I
10.1103/PhysRevE.92.041001
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Connectivity and conductivity of two-dimensional fracture networks (FNs), as an important type of continuous random networks, are examined systematically through Monte Carlo simulations under a variety of conditions, including different power law distributions of the fracture lengths and domain sizes. The simulation results are analyzed using analogies of the percolation theory for discrete random networks. With a characteristic length scale and conductivity scale introduced, we show that the connectivity and conductivity of FNs can be well described by universal scaling solutions. These solutions shed light on previous observations of scale-dependent FN behavior and provide a powerful method for quantifying effective bulk properties of continuous random networks.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] CONNECTIVITY IN RANDOM NETWORKS
    STUBBS, DF
    GOOD, PI
    BULLETIN OF MATHEMATICAL BIOLOGY, 1976, 38 (03) : 295 - 304
  • [2] Connectivity of growing random networks
    Krapivsky, PL
    Redner, S
    Leyvraz, F
    PHYSICAL REVIEW LETTERS, 2000, 85 (21) : 4629 - 4632
  • [3] Connectivity scaling laws in wireless networks
    Department of Engineering Science, University of Oxford, Oxford
    OX1 3PJ, United Kingdom
    不详
    BS1 4ND, United Kingdom
    不详
    BS8 1TW, United Kingdom
    IEEE Wireless Commun. Lett., 6 (629-632):
  • [4] Connectivity Scaling Laws in Wireless Networks
    Coon, Justin P.
    Georgiou, Orestis
    Dettmann, Carl P.
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2015, 4 (06) : 629 - 632
  • [5] Scaling solutions in a continuous dimension
    Codello, Alessandro
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (46)
  • [6] Emergence of scaling in random networks
    Barabási, AL
    Albert, R
    SCIENCE, 1999, 286 (5439) : 509 - 512
  • [7] Scaling function in conductivity of planar random checkerboards
    Dalaq, Ahmed Saleh
    Ranganathan, Shivakumar I.
    Ostoja-Starzewski, Martin
    COMPUTATIONAL MATERIALS SCIENCE, 2013, 79 : 252 - 261
  • [8] Electrical anisotropy and conductivity distribution functions of fractal random networks and of the crust: The scale effect of connectivity
    Bahr, K
    GEOPHYSICAL JOURNAL INTERNATIONAL, 1997, 130 (03) : 649 - 660
  • [9] Investigation of the conductivity of random networks
    Bigalke, J
    PHYSICA A, 1999, 272 (3-4): : 281 - 293
  • [10] Connectivity in random grain boundary networks
    Kumar, M
    Schuh, CA
    King, WE
    ELECTRON MICROSCOPY: ITS ROLE IN MATERIALS SCIENCE: THE MIKE MESHII SYMPOSIUM, 2003, : 51 - 58