Solving acoustic nonlinear eigenvalue problems with a contour integral method

被引:31
|
作者
Leblanc, Alexandre [1 ,2 ]
Lavie, Antoine [1 ,2 ]
机构
[1] Univ Lille Nord France, F-59000 Lille, France
[2] UArtois, LGCgE, F-62400 Bethune, France
关键词
Eigenanalysis; Meshless method; Contour integral; FUNDAMENTAL-SOLUTIONS;
D O I
10.1016/j.enganabound.2012.09.007
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, a contour integral method (especially the block Sakurai-Sugiura method) is used to solve the eigenvalue problems governed by the Helmholtz equation, and formulated through two meshless methods. Singular value decomposition is employed to filter out the irrelevant eigenvalues. The accuracy and the ease of use of the proposed approach is illustrated with some numerical examples, and the choice of the contour integral method parameters is discussed. In particular, an application of the method on a sphere with realistic impedance boundary condition is performed and validated by comparison with results issued from a finite element method software. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:162 / 166
页数:5
相关论文
共 50 条
  • [1] An integral method for solving nonlinear eigenvalue problems
    Beyn, Wolf-Juergen
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (10) : 3839 - 3863
  • [2] A rational approximation method for solving acoustic nonlinear eigenvalue problems
    El-Guide, Mohamed
    Miedlar, Agnieszka
    Saad, Yousef
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2020, 111 : 44 - 54
  • [3] ITERATION METHOD FOR SOLVING NONLINEAR EIGENVALUE PROBLEMS
    DEMOULIN, YMJ
    CHEN, YM
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1975, 28 (03) : 588 - 595
  • [4] A numerical method for polynomial eigenvalue problems using contour integral
    Junko Asakura
    Tetsuya Sakurai
    Hiroto Tadano
    Tsutomu Ikegami
    Kinji Kimura
    Japan Journal of Industrial and Applied Mathematics, 2010, 27 : 73 - 90
  • [5] A numerical method for polynomial eigenvalue problems using contour integral
    Asakura, Junko
    Sakurai, Tetsuya
    Tadano, Hiroto
    Ikegami, Tsutomu
    Kimura, Kinji
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2010, 27 (01) : 73 - 90
  • [6] Contour Integral Methods for Nonlinear Eigenvalue Problems: A Systems Theoretic Approach
    Brennan, Michael C.
    Embree, Mark
    Gugercin, Serkan
    SIAM REVIEW, 2023, 65 (02) : 439 - 470
  • [7] A block Arnoldi-type contour integral spectral projection method for solving generalized eigenvalue problems
    Imakura, Akira
    Du, Lei
    Sakurai, Tetsuya
    APPLIED MATHEMATICS LETTERS, 2014, 32 : 22 - 27
  • [8] A contour integral-based method for nonlinear eigenvalue problems for semi-infinite photonic crystals
    Lyu, Xing-Long
    Li, Tiexiang
    Lin, Wen-Wei
    COMPUTER PHYSICS COMMUNICATIONS, 2025, 306
  • [9] Integral Dispersion Equation Method for Nonlinear Eigenvalue Problems
    Smirnov, Yu. G.
    DIFFERENTIAL EQUATIONS, 2020, 56 (10) : 1298 - 1305
  • [10] Integral Dispersion Equation Method for Nonlinear Eigenvalue Problems
    Yu. G. Smirnov
    Differential Equations, 2020, 56 : 1298 - 1305