Spinel of Nickel-Cobalt Oxide with Rod-Like Architecture as Electrocatalyst for Oxygen Evolution Reaction

被引:13
|
作者
Dymerska, Anna [1 ]
Kukulka, Wojciech [1 ]
Biegun, Marcin [1 ]
Mijowska, Ewa [1 ]
机构
[1] West Pomeranian Univ Technol, Dept Nanomat Physicochem, Piastow Ave 45, PL-70311 Szczecin, Poland
关键词
spinel; electrocatalyst; oxygen evolution reaction; thermal treatment; TRANSITION-METAL OXIDES; EFFICIENT ELECTROCATALYSTS; BIFUNCTIONAL ELECTROCATALYSTS; MESOPOROUS NICO2O4; NANOWIRE ARRAYS; REDUCTION; GRAPHENE; FOAM; MORPHOLOGY; NANOSHEETS;
D O I
10.3390/ma13183918
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The renewable energy technologies require electrocatalysts for reactions, such as the oxygen and/or hydrogen evolution reaction (OER/HER). They are complex electrochemical reactions that take place through the direct transfer of electrons. However, mostly they have high over-potentials and slow kinetics, that is why they require electrocatalysts to lower the over-potential of the reactions and enhance the reaction rate. The commercially used catalysts (e.g., ruthenium nanoparticles-Ru, iridium nanoparticles-Ir, and their oxides: RuO2, IrO2, platinum-Pt) contain metals that have poor stability, and are not economically worthwhile for widespread application. Here, we propose the spinel structure of nickel-cobalt oxide (NiCo2O4) fabricated to serve as electrocatalyst for OER. These structures were obtained by a facile two-step method: (1) One-pot solvothermal reaction and subsequently (2) pyrolysis or carbonization, respectively. This material exhibits novel rod-like morphology formed by tiny spheres. The presence of transition metal particles such as Co and Ni due to their conductivity and electron configurations provides a great number of active sites, which brings superior electrochemical performance in oxygen evolution and good stability in long-term tests. Therefore, it is believed that we propose interesting low-cost material that can act as a super stable catalyst in OER.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 50 条
  • [1] Layered Nickel-Cobalt Oxide Coatings on Stainless Steel as an Electrocatalyst for Oxygen Evolution Reaction
    Barauskiene, Ieva
    Valatka, Eugenijus
    ELECTROCATALYSIS, 2019, 10 (01) : 63 - 71
  • [2] Layered Nickel-Cobalt Oxide Coatings on Stainless Steel as an Electrocatalyst for Oxygen Evolution Reaction
    Ieva Barauskienė
    Eugenijus Valatka
    Electrocatalysis, 2019, 10 : 63 - 71
  • [3] Bimetallic nickel-cobalt oxalate as highly efficient electrocatalyst for oxygen evolution reaction
    Sun, Jia-Qi
    Ma, Zi-Zai
    Zhou, Bing
    Yang, Jie
    Wang, Xiao-Guang
    Ranliao Huaxue Xuebao/Journal of Fuel Chemistry and Technology, 2022, 50 (10): : 1278 - 1287
  • [4] Facile synthesis of rod-like nickel-cobalt oxide nanostructure for supercapacitor with excellent cycling stability
    Dang, Shuqing
    Wang, Zhuo
    Jia, Wei
    Cao, Yali
    Zhang, Juanli
    MATERIALS RESEARCH BULLETIN, 2019, 116 : 117 - 125
  • [5] Hierarchically Structured Graphene Aerogel Supported Nickel-Cobalt Oxide Nanowires as an Efficient Electrocatalyst for Oxygen Evolution Reaction
    Guo, Donglei
    Xu, Jiaqi
    Liu, Guilong
    Yu, Xu
    MOLECULES, 2024, 29 (08):
  • [6] A nanostructured nickel-cobalt alloy with an oxide layer for an efficient oxygen evolution reaction
    Wu, Lian-Kui
    Wu, Wei-Yao
    Xia, Jie
    Cao, Hua-Zhen
    Hou, Guang-Ya
    Tang, Yi-Ping
    Zheng, Guo-Qu
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (21) : 10669 - 10677
  • [7] Flower-like nickel-cobalt aluminum composite prepared by hydrothermal method and its application as electrocatalyst for oxygen evolution reaction
    Zhang, Yiwen
    Liu, Haitao
    Zhang, Chunyong
    Li, Zhe
    Wang, Haoyu
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2022, 17 (07):
  • [8] Nickel-cobalt layered double hydroxide nanosheets as high-performance electrocatalyst for oxygen evolution reaction
    Jiang, Jing
    Zhang, Ailing
    Li, Lili
    Ai, Lunhong
    JOURNAL OF POWER SOURCES, 2015, 278 : 445 - 451
  • [9] Nickel-cobalt oxalate as an efficient non-precious electrocatalyst for an improved alkaline oxygen evolution reaction
    Ghosh, Sourav
    Jana, Rajkumar
    Ganguli, Sagar
    Inta, Harish Reddy
    Tudu, Gouri
    Koppisetti, Heramba V. S. R. M.
    Datta, Ayan
    Mahalingam, Venkataramanan
    NANOSCALE ADVANCES, 2021, 3 (13): : 3770 - 3779
  • [10] Hierarchical Nickel-Cobalt Dichalcogenide Nanostructure as an Efficient Electrocatalyst for Oxygen Evolution Reaction and a Zn-Air Battery
    Hyun, Suyeon
    Shanmugam, Sangaraju
    ACS OMEGA, 2018, 3 (08): : 8621 - 8630