Vector fuzzy C-means

被引:5
|
作者
Hadi, Mahdipour [1 ]
Morteza, Khademi [1 ]
Hadi, Sadoghi Yazdi [2 ,3 ]
机构
[1] Ferdowsi Univ Mashhad, Dept Elect Engn, Mashhad, Iran
[2] Ferdowsi Univ Mashhad, Dept Comp Engn, Mashhad, Iran
[3] Ferdowsi Univ Mashhad, Ctr Excellence Soft Comp & Intelligent Informat P, Mashhad, Iran
关键词
Vector fuzzy c-means; crisp; symbolic interval and fuzzy numbers; clustering; MEMBERSHIP FUNCTION; GENERATION METHODS; SIMILARITY; ALGORITHM; NUMBERS; MODEL;
D O I
10.3233/IFS-2012-0561
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Many variants of fuzzy c-means (FCM) clustering method are applied to crisp numbers but only a few of them are extended to non-crisp numbers, mainly due to the fact that the latter needs complicated equations and exhausting calculations. Vector form of fuzzy c-means (VFCM), proposed in this paper, simplifies the FCM clustering method applying to non-crisp (symbolic interval and fuzzy) numbers. Indeed, the VFCM method is a simple and general form of FCM that applies the FCM clustering method to various types of numbers (crisp and non-crisp) with different correspondent metrics in a single structure, and without any complex calculations and exhaustive derivations. The VFCM maps the input (crisp or non-crisp) features to crisp ones and then applies the conventional FCM to the input numbers in the resulted crisp features' space. Finally, the resulted crisp prototypes in the mapped space would be influenced by inverse mapping to obtain the main prototypes' parameters in the input features' space. Equations of FCM applied to crisp, symbolic interval and fuzzy numbers (i.e., LR-type, trapezoidal-type, triangular-type and normal-type fuzzy numbers) are obtained in this paper, using the proposed VFCM method. Final resulted equations are the same as derived equations in [7, 9, 10, 13, 18, 19, 30, 38-40] (the FCM clustering method applying to non-crisp numbers directly and without using VFCM), while the VFCM obtains these equations using a single structure for all cases [7, 9, 10, 13, 18, 19, 30, 38-40] without any complex calculations. It is showed that VFCM is able to clustering of normal-type fuzzy numbers, too. Simulation results approve truly of normal-type fuzzy numbers clustering.
引用
收藏
页码:363 / 381
页数:19
相关论文
共 50 条
  • [1] Random vector clustering using fuzzy c-means
    Hathaway, RJ
    Rogers, GW
    Bezdek, JC
    1998 CONFERENCE OF THE NORTH AMERICAN FUZZY INFORMATION PROCESSING SOCIETY - NAFIPS, 1998, : 251 - 255
  • [2] An integrated approach to fuzzy learning vector quantization and fuzzy c-means clustering
    Karayiannis, NB
    Bezdek, JC
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 1997, 5 (04) : 622 - 628
  • [3] Weighted fuzzy learning vector quantization and weighted fuzzy c-means algorithms
    Karayiannis, NB
    ICNN - 1996 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS, VOLS. 1-4, 1996, : 1044 - 1049
  • [4] Fuzzy C-means plus plus : Fuzzy C-means with effective seeding initialization
    Stetco, Adrian
    Zeng, Xiao-Jun
    Keane, John
    EXPERT SYSTEMS WITH APPLICATIONS, 2015, 42 (21) : 7541 - 7548
  • [5] Application of Hard C-means and Fuzzy C-means in data fusion
    Tang Ai-Hong
    Cai Li-An
    Zhang You-Mei
    DIGITAL MANUFACTURING & AUTOMATION III, PTS 1 AND 2, 2012, 190-191 : 265 - 268
  • [6] Conditional fuzzy C-Means
    Pedrycz, W
    PATTERN RECOGNITION LETTERS, 1996, 17 (06) : 625 - 631
  • [7] Fuzzy c-Means Herding
    Runkler, Thomas A.
    PROCEEDINGS OF THE JOINT 2009 INTERNATIONAL FUZZY SYSTEMS ASSOCIATION WORLD CONGRESS AND 2009 EUROPEAN SOCIETY OF FUZZY LOGIC AND TECHNOLOGY CONFERENCE, 2009, : 149 - 154
  • [8] Fuzzy C-means based support vector machine for channel equalisation
    Juang, Chia-Feng
    Hsieh, Cheng-Da
    INTERNATIONAL JOURNAL OF GENERAL SYSTEMS, 2009, 38 (03) : 273 - 289
  • [9] Rough C-means and Fuzzy Rough C-means for Colour Quantisation
    Schaefer, Gerald
    Hu, Qinghua
    Zhou, Huiyu
    Peters, James F.
    Hassanien, Aboul Ella
    FUNDAMENTA INFORMATICAE, 2012, 119 (01) : 113 - 120
  • [10] Support vector classifier based on fuzzy c-means and Mahalanobis distance
    Zhang, Yong
    Xie, Fuding
    Huang, Dan
    Ji, Min
    JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2010, 35 (02) : 333 - 345