Generalised Linear Models for Prediction of Dissolved Oxygen in a Waste Stabilisation Pond

被引:6
|
作者
Pham, Duy Tan [1 ]
Ho, Long [1 ]
Espinoza-Palacios, Juan [1 ]
Arevalo-Durazno, Maria [1 ,2 ]
Van Echelpoel, Wout [1 ]
Goethals, Peter [1 ]
机构
[1] Univ Ghent, Dept Anim Sci & Aquat Ecol, B-9000 Ghent, Belgium
[2] Univ Azuay, Fac Ciencia & Tecnol, Av 24 De Mayo 7-77, Cuenca 010150, Ecuador
关键词
waste stabilisation pond; generalised linear model; spatiotemporal effect; dissolved oxygen control; Ecuador; HIGH-ALTITUDE; WATER; DESIGN; CFD; POPULATIONS; PERFORMANCE; PROTOCOL; SYSTEMS;
D O I
10.3390/w12071930
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Due to simplicity and low costs, waste stabilisation ponds (WSPs) have become one of the most popular biological wastewater treatment systems that are applied in many places around the globe. Increasingly, pond modelling has become an interesting tool to improve and optimise their performance. Unlike process-driven models, generalised linear models (GLMs) can deliver considerable practical values in specific case studies with limited resources of time, data and mechanistic understanding, especially in the case of pond systems containing vast complexity of many unknown processes. This study aimed to investigate the key driving factors of dissolved oxygen variability in Ucubamba WSP (Ecuador), by applying and comparing numerous GLMs. Particularly, using different data partitioning and cross-validation strategies, we compared the predictive accuracy of 83 GLMs. The obtained results showed that chlorophyllahad a strong impact on the dissolved oxygen (DO) level near the water surface, while organic matter could be the most influential factor on the DO variability at the bottom of the pond. Among the 83 models, the optimal models were pond- and depth-specific. Specifically, among the ponds, the models of MPs predicted DO more precisely than those of facultative ponds; while within a pond, the models of the surface performed better than those of the bottom. Using mean absolute error (MAE) and symmetric mean absolute percentage error (SMAPE) to represent model predictive performance, it was found that MAEs varied in the range of 0.22-2.75 mg L(-1)in the training period and 0.74-3.54 mg L(-1)in the validation period; while SMAPEs were in the range of 2.35-38.70% in the training period and 10.88-71.62% in the validation period. By providing insights into the oxygen-related processes, the findings could be valuable for future pond operation and monitoring.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Dynamical modelling of a waste stabilisation pond
    D. Dochain
    S. Grégoire
    A. Pauss
    M. Schaegger
    Bioprocess and Biosystems Engineering, 2003, 26 : 19 - 26
  • [2] Dynamical modelling of a waste stabilisation pond
    Dochain, D
    Grégoire, S
    Pauss, A
    Schaegger, M
    BIOPROCESS AND BIOSYSTEMS ENGINEERING, 2003, 26 (01) : 19 - 26
  • [3] Mechanisms for Parasites Removal in a Waste Stabilisation Pond
    Reinoso, Roberto
    Blanco, Saul
    Torres-Villamizar, Linda A.
    Becares, Eloy
    MICROBIAL ECOLOGY, 2011, 61 (03) : 684 - 692
  • [4] Mechanisms for Parasites Removal in a Waste Stabilisation Pond
    Roberto Reinoso
    Saúl Blanco
    Linda A. Torres-Villamizar
    Eloy Bécares
    Microbial Ecology, 2011, 61 : 684 - 692
  • [5] Waste stabilisation pond developments in New Zealand
    Archer, HE
    Mara, DD
    WATER SCIENCE AND TECHNOLOGY, 2003, 48 (02) : 9 - 15
  • [6] Algal community analysis in a waste stabilisation pond
    Duy Tan Pham
    Everaert, Gert
    Janssens, Natascha
    Alvarado, Andres
    Nopens, Ingmar
    Goethals, Peter L. M.
    ECOLOGICAL ENGINEERING, 2014, 73 : 302 - 306
  • [7] Confidence and prediction intervals for generalised linear accident models
    Wood, GR
    ACCIDENT ANALYSIS AND PREVENTION, 2005, 37 (02): : 267 - 273
  • [8] Seasonal influence of waste stabilisation pond effluent on DAF/F (dissolved air flotation/filtration) process operation
    Buisine, F
    Oemcke, D
    WATER SCIENCE AND TECHNOLOGY, 2003, 48 (02) : 357 - 364
  • [9] Waste stabilisation pond decommissioning: A painful but necessary decision
    Lawty, R
    Ashworth, JD
    Mara, DD
    WATER SCIENCE AND TECHNOLOGY, 1996, 33 (07) : 107 - 115
  • [10] Laboratory-scale waste stabilisation pond development
    Inglis, Amanda
    Webber, Judith
    Humphries, Bronwyn
    Ashworth, Matthew
    Weaver, Louise
    ENVIRONMENTAL TECHNOLOGY, 2022, 43 (25) : 3888 - 3904