Tetrahedral harmonics revisited

被引:12
|
作者
Wormer, PES [1 ]
机构
[1] Catholic Univ Nijmegen, Inst Theoret Chem, NSR RIM, NL-6525 ED Nijmegen, Netherlands
关键词
D O I
10.1080/00268970110086318
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Linear combinations of spherical harmonics are derived that are adapted to the molecular symmetry group T-d(M) and its isomorphic point groups T-d and O. The alternating group T(M), consisting of even permutations, is the semi-direct product V-4(S)C-3, where C-3 = {E, (123), (132)} is a cyclic group and V-4 = {E, (12) (34), (13) (24), (14) (23)}. Further T-d (M) = T(M) (S) {E, (12)*}. This structure of the group enables one to write down simple closed expressions for basis functions. Using the program Maple, tables up to and including l = 10 are generated.
引用
收藏
页码:1973 / 1980
页数:8
相关论文
共 50 条
  • [1] CONSTRUCTION OF TETRAHEDRAL HARMONICS
    FOX, K
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1970, 15 (03): : 324 - &
  • [2] CONSTRUCTION OF TETRAHEDRAL HARMONICS
    FOX, K
    OZIER, I
    JOURNAL OF CHEMICAL PHYSICS, 1970, 52 (10): : 5044 - &
  • [3] The Kontsevich tetrahedral flow revisited
    Bouisaghouane, A.
    Buring, R.
    Kiselev, A.
    JOURNAL OF GEOMETRY AND PHYSICS, 2017, 119 : 272 - 285
  • [4] Lattice harmonics expansion revisited
    Kontrym-Sznajd, G.
    Holas, A.
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2017, 103 : 116 - 122
  • [5] Spherical cap harmonics revisited and their relationship to ordinary spherical harmonics
    De Santis, A
    Torta, JM
    Lowes, FJ
    PHYSICS AND CHEMISTRY OF THE EARTH PART A-SOLID EARTH AND GEODESY, 1999, 24 (11-12): : 935 - 941
  • [6] Tetrahedral intrinsic structure of Oxygen-16 revisited
    Halcrow, C. J.
    Manton, N. S.
    27TH INTERNATIONAL NUCLEAR PHYSICS CONFERENCE (INPC2019), 2020, 1643
  • [7] A. Stern's analysis of the nodal sets of some families of spherical harmonics revisited
    Berard, P.
    Helffer, B.
    MONATSHEFTE FUR MATHEMATIK, 2016, 180 (03): : 435 - 468
  • [8] A. Stern’s analysis of the nodal sets of some families of spherical harmonics revisited
    P. Bérard
    B. Helffer
    Monatshefte für Mathematik, 2016, 180 : 435 - 468
  • [9] ECMI resonance in AKR revisited: Hyperbolic resonance, harmonics, and wave-wave interaction
    Baumjohann, W.
    Treumann, R. A.
    FRONTIERS IN PHYSICS, 2023, 11
  • [10] Spherical harmonics and monopole harmonics
    Fung, MK
    CHINESE JOURNAL OF PHYSICS, 2000, 38 (04) : 773 - 782