Realization of Levy walks as Markovian stochastic processes

被引:25
|
作者
Lubashevsky, Ihor [1 ,2 ,3 ]
Friedrich, Rudolf [4 ,5 ]
Heuer, Andreas [2 ,5 ]
机构
[1] Russian Acad Sci, AM Prokhorov Gen Phys Inst, Moscow 119991, Russia
[2] Univ Munster, Inst Phys Chem, D-48149 Munster, Germany
[3] Moscow Tech Univ Radioengn, Moscow 119454, Russia
[4] Univ Munster, Inst Theoret Phys, D-48149 Munster, Germany
[5] Univ Munster, Ctr Nonlinear Sci CeNoS, D-48149 Munster, Germany
来源
PHYSICAL REVIEW E | 2009年 / 79卷 / 01期
关键词
Brownian motion; Fokker-Planck equation; Markov processes; transport processes; EXTERNAL FORCE-FIELDS; ANOMALOUS DIFFUSION; FLIGHTS; EQUATIONS; LANGEVIN; MODELS; TIME;
D O I
10.1103/PhysRevE.79.011110
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Based on multivariate Langevin processes we present a realization of Levy flights as a continuous process. For the simple case of a particle moving under the influence of friction and a velocity-dependent stochastic force we explicitly derive the generalized Langevin equation and the corresponding generalized Fokker-Planck equation describing Levy flights. Our procedure is similar to the treatment of the Kramers-Fokker-Planck equation in the Smoluchowski limit. The proposed approach may open a way to treat Levy flights in inhomogeneous media or systems with boundaries in the future.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Conditioned random walks and Levy processes
    Doney, R. A.
    Jones, E. M.
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2012, 44 : 139 - 150
  • [2] Continuous-time multidimensional Markovian description of Levy walks
    Lubashevsky, Ihor
    Friedrich, Rudolf
    Heuer, Andreas
    PHYSICAL REVIEW E, 2009, 80 (03):
  • [3] A STOCHASTIC APPROACH TO ENHANCED DIFFUSION - LEVY WALKS
    BLUMEN, A
    KLAFTER, J
    ZUMOFEN, G
    EUROPHYSICS LETTERS, 1990, 13 (03): : 223 - 229
  • [4] Levy walks and generalized stochastic collision models
    Barkai, E
    Fleurov, VN
    PHYSICAL REVIEW E, 1997, 56 (06): : 6355 - 6361
  • [5] Continuous-time random walks and Levy walks with stochastic resetting
    Zhou, Tian
    Xu, Pengbo
    Deng, Weihua
    PHYSICAL REVIEW RESEARCH, 2020, 2 (01):
  • [6] On a fluctuation identity for random walks and Levy processes
    Alili, L
    Chaumont, L
    Doney, RA
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2005, 37 : 141 - 148
  • [7] α-TRANSIENCE AND α-RECURRENCE FOR RANDOM WALKS AND LEVY PROCESSES
    ZHANG HUIZENG ZHAO MINZHI YING JIANGANG Department of Mathematics
    Chinese Annals of Mathematics, 2005, (01) : 127 - 142
  • [8] Random walks and Levy processes as rough paths
    Chevyrev, Ilya
    PROBABILITY THEORY AND RELATED FIELDS, 2018, 170 (3-4) : 891 - 932
  • [9] Lifting Levy processes to hyperfinite random walks
    Albeverio, Sergio
    Herzberg, Frederik S.
    BULLETIN DES SCIENCES MATHEMATIQUES, 2006, 130 (08): : 697 - 706
  • [10] CONVEX MINORANTS OF RANDOM WALKS AND LEVY PROCESSES
    Abramson, Josh
    Pitman, Jim
    Ross, Nathan
    Uribe Bravo, Geronimo
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2011, 16 : 423 - 434