Estimation of nonlinear errors-in-variables models: An approximate solution

被引:10
|
作者
Hsiao, C
Wang, L
Wang, Q
机构
[1] UNIV SO CALIF,DEPT ECON,LOS ANGELES,CA 90089
[2] UNIV CHICAGO,GRAD SCH BUSINESS,CHICAGO,IL 60637
[3] UNIV BASEL,INST STAT & ECONOMETR,CH-4051 BASEL,SWITZERLAND
基金
美国国家科学基金会;
关键词
measurement error; nonlinear models; approximate least squares; bias adjusted estimators;
D O I
10.1007/BF02925212
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose an easy to derive and simple to compute approximate least squares or maximum likelihood estimator for nonlinear errors-in-variables models that does not require the knowledge of the conditional density of the latent variables given the observables. Specific examples and Monte Carlo studies demonstrate that the bias of this approximate estimator is small even when the magnitude of the variance of measurement errors to the variance of measured covariates is large.
引用
收藏
页码:1 / 25
页数:25
相关论文
共 50 条