Dynamics of the magnetoelastic phase transition and adiabatic temperature change in Mn1.3Fe0.7P0.5Si0.55

被引:14
|
作者
Fries, M. [1 ]
Gottschall, T. [2 ]
Scheibel, F. [1 ,3 ,4 ]
Pfeuffer, L. [1 ]
Skokov, K. P. [1 ]
Skourski, I [2 ]
Acet, M. [3 ,4 ]
Farle, M. [3 ,4 ]
Wosnitza, J. [2 ,5 ]
Gutfleisch, O. [1 ]
机构
[1] Tech Univ Darmstadt, Inst Mat Wissensch, D-64287 Darmstadt, Germany
[2] Helmholtz Zentrum Dresden Rossendorf, Dresden High Magnet Field Lab HLD EMFL, D-01328 Dresden, Germany
[3] Univ Duisburg Essen, Fak Phys, D-47057 Duisburg, Germany
[4] Univ Duisburg Essen, CENIDE, D-47057 Duisburg, Germany
[5] Tech Univ Dresden, Inst Festkorper & Mat phys, D-01062 Dresden, Germany
基金
欧洲研究理事会;
关键词
Magnetic cooling; Dynamical effects; First-order transition; Fe2P; High magnetic-fields; MAGNETOCALORIC MATERIALS; 1ST-ORDER TRANSITION; REFRIGERATION;
D O I
10.1016/j.jmmm.2018.12.086
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The adiabatic temperature change Delta T-ad of a Mn1.3Fe0.7P0.5Si0.55 Fe2P-type alloy was measured under different magnetic field-sweep rates from 0.93 Ts-1 to 2870 Ts-1. We find a field-sweep-rate independent magnetocaloric effect due to a partial alignment of magnetic moments in the paramagnetic region overlapping with the magnetocaloric effect of the first-order phase transition. Additionally, the first-order phase transition is not completed even in fields up to 20 T leading to a non-saturating behavior of Delta T-ad. Measurements in different pulsed fields reveal that the first-order phase transition cannot follow the fast field changes as previously assumed, resulting in a distinct field-dependent hysteresis in Delta T-ad.
引用
收藏
页码:287 / 291
页数:5
相关论文
共 45 条
  • [1] Thermal Hysteresis and Magnetocaloric Effect of Mn1.3Fe0.7P0.45Si0.55 Compound
    Geng Yaoxiang
    Tegus, O.
    Zhang Guifeng
    Dong Chuang
    RARE METAL MATERIALS AND ENGINEERING, 2012, 41 : 384 - 387
  • [2] Mn1.3Fe0.7P0.45Si0.55化合物的热滞与磁热效应
    耿遥祥
    特古斯
    张贵锋
    董闯
    稀有金属材料与工程, 2012, 41(S2) (S2) : 384 - 387
  • [3] Thermal-history dependent magnetoelastic transition in (MN,FE)2(P,SI).
    Miao, X.
    Caron, L.
    Gercsi, Z.
    Daoud-Aladine, A.
    Van Dijk, N.
    Sandeman, K. G.
    Bruck, E.
    2015 IEEE MAGNETICS CONFERENCE (INTERMAG), 2015,
  • [4] Thermal-history dependent magnetoelastic transition in (Mn,Fe)2(P,Si)
    Miao, X. F.
    Caron, L.
    Gercsi, Z.
    Daoud-Aladine, A.
    van Dijk, N. H.
    Bruck, E.
    APPLIED PHYSICS LETTERS, 2015, 107 (04)
  • [5] Improving work temperature span and reversibility of magnetoelastic transition of (Mn,Fe)2(P,Si) alloys by Mg doping
    Wang, H. Y.
    Zheng, Z. G.
    Chen, X. L.
    Da, S.
    Qiu, Z. G.
    Zeng, D. C.
    Xia, Q. B.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2023, 574
  • [6] X-ray diffraction analysis of the magnetoelastic phase transition in the Mn-Fe-P-Si magnetocaloric alloy
    Pasko, Alexandre
    Bartok, Andras
    Zehani, Karim
    Bessais, Lotfi
    Mazaleyrat, Frederic
    LoBue, Martino
    AIP ADVANCES, 2016, 6 (05):
  • [7] Tuning the magnetoelastic transition in (Mn,Fe)2(P,Si) by B, C, and N doping
    Miao, X. F.
    Thang, N. V.
    Caron, L.
    Yibole, H.
    Smith, R. I.
    van Dijk, N. H.
    Bruck, E.
    SCRIPTA MATERIALIA, 2016, 124 : 129 - 132
  • [8] Mn1.3Fe0.7-xVxP0.45Si0.55系列化合物的磁热效应
    刘雨江
    耿遥祥
    特古斯
    哈斯朝鲁
    宋志强
    海山
    利胜
    内蒙古师范大学学报(自然科学汉文版), 2012, 41 (04) : 368 - 371
  • [9] Effects of carbon doping on structure and magnetocaloric properties of Mn1.25Fe0.7P0.5Si0.5 alloys
    Niu, Jimei
    Zheng, Zhigang
    INTERNATIONAL JOURNAL OF MATERIALS RESEARCH, 2021, 112 (11) : 872 - 879
  • [10] Lattice dynamics across the magnetic transition in (Mn,Fe)1.95(P,Si)
    Bessas, D.
    Maschek, M.
    Yibole, H.
    Lai, J. -W.
    Souliou, S. M.
    Sergueev, I.
    Dugulan, A. I.
    van Dijk, N. H.
    Bruck, E.
    PHYSICAL REVIEW B, 2018, 97 (09)