Peptide models provide evidence for significant structure in the denatured state of a rapidly folding protein: The villin headpiece subdomain

被引:70
|
作者
Tang, YF
Rigotti, DJ
Fairman, R
Raleigh, DP [1 ]
机构
[1] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA
[2] SUNY Stony Brook, Program Biochem & Struct Biol, Stony Brook, NY 11794 USA
[3] Haverford Coll, Dept Mol Cell & Dev Biol, Haverford, PA 19041 USA
关键词
D O I
10.1021/bi035652p
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The villin headpiece subdomain is a cooperatively folded 36-residue, three-alpha-helix protein. The domain is one of the smallest naturally occurring sequences which has been shown to fold. Recent experimental studies have shown that it folds on the 10-mus time scale. Its small size, simple topology, and very rapid folding have made it an attractive target for computational studies of protein folding. We present temperature-dependent NMR studies that provide evidence for significant structure in the denatured state of the headpiece subdomain. A set of peptide fragments derived from the headpiece were also characterized in order to determine if there is a significant tendency to form a locally stabilized structure in the denatured state. Peptides corresponding to each of the three isolated helices and to the connection between the first and second helices were largely unstructured. A longer peptide fragment which contains the first and second helices shows considerable structure, as judged by NMR and CD. Concentration-dependent CD measurements and analytical ultracentrifugation experiments indicate that the structure is not due to self-association. NMR studies indicate that the structure is stabilized by tertiary interactions involving phenylalanines and Val 50. A peptide in which two of the three phenylalanines are changed to leucine is considerably less structured, confirming the importance of the phenylalanines. This work indicates that there is significant structure in the denatured state of this rapidly folding protein.
引用
收藏
页码:3264 / 3272
页数:9
相关论文
共 36 条
  • [1] NMR characterization of a peptide model provides evidence for significant structure in the unfolded state of the villin headpiece helical subdomain
    Tang, Yuefeng
    Goger, Michael J.
    Raleigh, Daniel P.
    BIOCHEMISTRY, 2006, 45 (22) : 6940 - 6946
  • [2] Evidence of Multiple Folding Pathways for the Villin Headpiece Subdomain
    Zhu, Li
    Ghosh, Kingshuk
    King, Michael
    Cellmer, Troy
    Bakajin, Olgica
    Lapidus, Lisa J.
    JOURNAL OF PHYSICAL CHEMISTRY B, 2011, 115 (43): : 12632 - 12637
  • [3] Effect of modulating unfolded state structure on the folding kinetics of the villin headpiece subdomain
    Brewer, SH
    Vu, DM
    Tang, YF
    Li, Y
    Franzen, S
    Raleigh, DP
    Dyer, RB
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (46) : 16662 - 16667
  • [4] Native like structure in the unfolded state of the villin headpiece helical subdomain, an ultrafast folding protein
    Meng, Wenli
    Shan, Bing
    Tang, Yuefeng
    Raleigh, Daniel P.
    PROTEIN SCIENCE, 2009, 18 (08) : 1692 - 1701
  • [5] Dynamic Folding Pathway Models of the Villin Headpiece Subdomain (HP-36) Structure
    Lee, In-Ho
    Kim, Seung-Yeon
    Lee, Jooyoung
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2010, 31 (01) : 57 - 65
  • [6] Characterization of peptide fragments derived from the villin headpiece subdomain: Evidence for nonrandom structure in the unfolded state.
    Tang, YF
    Raleigh, DP
    BIOCHEMISTRY, 2003, 42 (28) : 8644 - 8644
  • [7] Probing the folding transition state structure of the villin headpiece subdomain via side chain and backbone mutagenesis
    Bunagan, Michelle R.
    Gao, Jianmin
    Kelly, Jeffery W.
    Gai, Feng
    Journal of the American Chemical Society, 2009, 131 (21): : 7470 - 7476
  • [8] The protein folding network indicates that the ultrafast folding mutant of villin headpiece subdomain has a deeper folding funnel
    Lei, Hongxing
    Chen, Changjun
    Xiao, Yi
    Duan, Yong
    JOURNAL OF CHEMICAL PHYSICS, 2011, 134 (20):
  • [9] Probing. the Folding Transition State Structure of the Villin Headpiece Subdomain via Side Chain and Backbone Mutagenesis
    Bunagan, Michelle R.
    Gao, Jianmin
    Kelly, Jeffery W.
    Gai, Feng
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (21) : 7470 - 7476
  • [10] Characterization of peptide fragments derived from Villin Headpiece subdomain: Evidence for non-random structure in the unfolded state.
    Tang, YF
    Raleigh, DP
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2003, 226 : U187 - U187