A family of Koszul algebras arising from finite-dimensional representations of simple Lie algebras

被引:22
|
作者
Chari, Vyjayanthi [1 ]
Greenstein, Jacob [1 ]
机构
[1] Univ Calif Riverside, Dept Math, Riverside, CA 92521 USA
基金
美国国家科学基金会;
关键词
Koszul algebras; Current algebras; Algebras of invariants; CATEGORIES; MODULES;
D O I
10.1016/j.aim.2008.11.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let g be a finite-dimensional simple Lie algebra and let S be the locally finite part of the algebra of invariants (End(C) V circle times S(g))(g) where V is the direct sum of all simple finite-dirnensional modules for g and S(g) is the symmetric algebra of g. Given an integral weight xi, let Psi = Psi(xi) be the subset of roots which have maximal scalar product with xi. Given a dominant integral weight lambda and xi such that Psi is a subset of the positive roots we construct a finite-dimensional subalgebra S-Psi(g)(<=Psi lambda) of S-g and prove that the algebra is Koszul of global dimension at most the cardinality of Psi. Using this we construct naturally an infinite-dimensional non-commutative Koszul algebra of global dimension equal to the cardinality of Psi. The results and the methods are motivated by the study of the category of finite-dimensional representations of the affine and quantum affine algebras. (C) 2008 Elsevier Inc. All rights reserved,
引用
收藏
页码:1193 / 1221
页数:29
相关论文
共 50 条