Sensitivity analysis for robust parameter design experiments

被引:2
|
作者
Litko, JR [1 ]
机构
[1] Univ Dayton, Engn Management & Syst Dept, Dayton, OH 45469 USA
关键词
D O I
10.1109/WSC.2005.1574483
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Robust parameter design experiments lead to products and processes that are insensitive to the effects of noise. These experiments reveal the interaction of the noise sources with design or control factors usually allowing creation of products that are relatively immune to noise. Finding truly optimal settings for design factors depends on the noise in the lab being representative of the actual operating environment and assumes potential product users all see the same noise conditions. This paper shows how basic design solutions can be shaped when multiple populations see different noise conditions and when typical assumptions on noise sources are violated.
引用
收藏
页码:2020 / 2025
页数:6
相关论文
共 50 条
  • [1] A new design criterion for robust parameter experiments
    Del Castillo, Enrique
    Alvarez, Maria Jesus
    Ilzarbe, Laura
    Viles, Elizabeth
    JOURNAL OF QUALITY TECHNOLOGY, 2007, 39 (03) : 279 - 295
  • [2] On the determination of robust settings in parameter design experiments
    Hou, XS
    Wu, CFJ
    STATISTICS & PROBABILITY LETTERS, 2001, 54 (02) : 137 - 145
  • [3] A statistical perspective on oxygen diffusion and surface exchange experiments: Sensitivity analysis, parameter estimation and robust optimal experimental design
    Ciucci, Francesco
    SOLID STATE IONICS, 2013, 232 : 97 - 105
  • [4] Exploiting the inherent structure in robust parameter design experiments
    Berube, J
    Nair, VN
    STATISTICA SINICA, 1998, 8 (01) : 43 - 66
  • [6] Robust Parameter Design With Computer Experiments Using Orthonormal Polynomials
    Tan, Matthias Hwai Yong
    TECHNOMETRICS, 2015, 57 (04) : 468 - 478
  • [7] Robust parameter design for constrained randomization lifetime improvement experiments
    Lv, Shanshan
    Zhao, Yichen
    Li, Sen
    Wang, Guodong
    Wang, Xueqing
    JOURNAL OF MANAGEMENT SCIENCE AND ENGINEERING, 2025, 10 (01) : 126 - 141
  • [8] Profile-based Sensitivity in the Design of Experiments for Parameter Precision
    Sulieman, Hana
    2013 5TH INTERNATIONAL CONFERENCE ON MODELING, SIMULATION AND APPLIED OPTIMIZATION (ICMSAO), 2013,
  • [9] Modelling deammonification in biofilm systems: Sensitivity and identifiability analysis as a basis for the design of experiments for parameter estimation
    Brockmann, Doris
    Rosenwinkel, Karl-Heinz
    Morgenroth, Eberhard
    16TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING AND 9TH INTERNATIONAL SYMPOSIUM ON PROCESS SYSTEMS ENGINEERING, 2006, 21 : 221 - 226
  • [10] Parameter Sensitivity Analysis and Robust Design Approach for Flux-Switching Permanent Magnet Machines
    Zhang, Gan
    Tong, Qing
    Qiu, Anjian
    Xu, Xiaohan
    Hua, Wei
    Chen, Zhihong
    ENERGIES, 2022, 15 (06)