Dynamical Behavior Analysis and Control of a Fractional-order Discretized Tumor Model

被引:0
|
作者
Zhang, Yaling [1 ]
Zhang, Xiaodan [1 ]
Zhang, Yinghan [1 ]
机构
[1] Univ Sci & Technol Beijing, Sch Math & Phys, Beijing 100083, Peoples R China
关键词
fractional-order; cancer model; Discretization; chaos; feedback control; BIFURCATION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this work, we constructed a new fractional-order dynamical model of tumor and apply Euler method to obtain the discrete system. Local stability of the fixed points of the discretized system is studied. Numerical simulations show the chaotic attractor and the richer dynamical behavior of the discretized system. Linear feedback control method is used to control chaos in the considered discretized system. Numerical simulations results show that the controller can control the chaos effectively.
引用
收藏
页码:163 / 168
页数:6
相关论文
共 50 条
  • [1] Dynamical Analysis of Generalized Tumor Model with Caputo Fractional-Order Derivative
    Padder, Ausif
    Almutairi, Laila
    Qureshi, Sania
    Soomro, Amanullah
    Afroz, Afroz
    Hincal, Evren
    Tassaddiq, Asifa
    FRACTAL AND FRACTIONAL, 2023, 7 (03)
  • [2] Analysis and dynamical behavior of fractional-order cancer model with vaccine strategy
    Farman, Muhammad
    Akgul, Ali
    Ahmad, Aqeel
    Imtiaz, Sumiyah
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (07) : 4871 - 4882
  • [3] Dynamical analysis of fractional-order chemostat model
    Aris, Nor Afiqah Mohd
    Jamaian, Siti Suhana
    AIMS BIOPHYSICS, 2021, 8 (02): : 182 - 197
  • [4] Dynamical Analysis of a Fractional-order HIV Model
    Ye, Haiping
    Ding, Yongsheng
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2009, 49 (03): : 255 - 268
  • [5] Dynamical analysis of a fractional-order HIV model
    Department of Applied Mathematics, Donghua University, Shanghai 201620, China
    不详
    CMES Comput. Model. Eng. Sci., 2009, 3 (255-268): : 255 - 268
  • [6] Qualitative behavior for a discretized conformable fractional-order predator-prey model
    Berkal, Messaoud
    Navarro, Juan F.
    Hamada, M. Y.
    Semmar, Billel
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2025,
  • [7] Dynamical analysis of fractional-order modified logistic model
    Abbas, Syed
    Banerjee, Malay
    Momani, Shaher
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (03) : 1098 - 1104
  • [8] Dynamical Analysis of a Fractional-Order Hantavirus Infection Model
    Moustafa, Mahmoud
    Mohd, Mohd Hafiz
    Ismail, Ahmad Izani
    Abdullah, Farah Aini
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2020, 21 (02) : 171 - 181
  • [9] Numerical analysis of fractional-order tumor model
    Sohail, Ayesha
    Arshad, Sadia
    Javed, Sana
    Maqbool, Khadija
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2015, 8 (05)
  • [10] Chaos in a Fractional-Order Dynamical Model of Love and Its Control
    Cu, Rencai
    Xu, Yong
    NONLINEAR MATHEMATICS FOR UNCERTAINTY AND ITS APPLICATIONS, 2011, 100 : 349 - 356