Multiplicity and concentration behavior of positive solutions for a quasilinear problem in Orlicz-Sobolev spaces without Ambrosetti-Rabinowitz condition via penalization method

被引:1
|
作者
Ait-Mahiout, K. [1 ]
机构
[1] Ecole Normale Super, Lab Theorie Point Fixe & Applicat, BP 92, Algiers 16006, Algeria
关键词
Variational methods; Quasilinear problems; Orlicz-Sobolev space; Positive solutions; ELLIPTIC-EQUATIONS; BOUND-STATES; EXISTENCE;
D O I
10.1007/s41808-020-00054-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This work is concerned with existence, multiplicity and concentration of positive solutions for the following class of quasilinear problems -Delta(Phi)u+V(epsilon x)phi(vertical bar u vertical bar)u=f(u) in R-N (N >= 2), where Phi(t)=f(0)(vertical bar t vertical bar)phi(s)sds is a N-function, Delta(Phi) is the Phi-Laplacian operator, epsilon is a positive parameter, V:R-N -> R is a continuous function and f:R -> R is a C-1-function.
引用
收藏
页码:473 / 506
页数:34
相关论文
共 33 条