Numerical microlocal analysis of 2-D noisy harmonic plane and circular waves

被引:2
|
作者
Benamou, J. -D. [1 ]
Collino, F. [2 ]
Marmorat, S. [1 ]
机构
[1] INRIA, Domaine De Voluceau, Rocquencourt, France
[2] CERFACS, F-31057 Toulouse, France
关键词
plane waves; point source; inverse scattering; FAST MULTIPOLE METHOD; SCATTERING PROBLEMS; TRUNCATION; DISCOVERY;
D O I
10.3233/ASY-121157
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a mathematical and numerical analysis of the stability and accuracy of the NMLA (Numerical MicroLocal Analysis) method [J. Comput. Phys. 199(2) (2004), 717-741] and its discretization. We restrict to homogeneous space and focus on the two simplest cases: (1) Noisy plane wave packets, (2) Noisy point source solutions. A stability result is obtained through the introduction of a new "impedance" observable. The analysis of the point source case leads to a modified second order (curvature dependent) correction of the algorithm. Since NMLA is local, this second order improved version can be applied to general data (heterogeneous media). See [J. Comput. Phys. 231(14) (2012), 4643-4661] for a an application to a source discovery inverse problem.
引用
收藏
页码:157 / 187
页数:31
相关论文
共 50 条
  • [1] Numerical microlocal analysis of harmonic wavefields
    Benamou, JD
    Collino, F
    Runborg, O
    JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 199 (02) : 717 - 741
  • [3] Analytical analysis of a circular tunnel with the segmental lining under harmonic plane waves
    Miao, Yong-Hong
    Lu, Jian-Fei
    ACTA MECHANICA, 2025, 236 (02) : 1195 - 1216
  • [4] Numerical analysis of InSb parameters and InSb 2-D Infrared Focal Plane Arrays
    Zhang, Xiaolei
    Zhang, Hongfei
    Sun, Weiguo
    Zhang, Lei
    Meng, Chao
    Lu, Zhengxiong
    6TH INTERNATIONAL SYMPOSIUM ON ADVANCED OPTICAL MANUFACTURING AND TESTING TECHNOLOGIES: OPTOELECTRONIC MATERIALS AND DEVICES FOR SENSING, IMAGING, AND SOLAR ENERGY, 2012, 8419
  • [5] How ideas from microlocal analysis can be applied in 2-D fluid mechanics
    Chemin, JY
    PARTIAL DIFFERENTIAL EQUATIONS AND MATHEMATICAL PHYSICS, 1996, 21 : 92 - 121
  • [6] 2-D composite model for numerical simulations of nonlinear waves
    Qi, P
    Wang, YX
    Zou, ZL
    CHINA OCEAN ENGINEERING, 2000, 14 (01) : 113 - 120
  • [7] Numerical simulations of 2-D steady and unsteady breaking waves
    Lupieri, Guido
    Contento, Giorgio
    OCEAN ENGINEERING, 2015, 106 : 298 - 316
  • [8] Diffraction test for a submerged body in 2-D numerical waves
    He, Wuzhou
    Duan, Wenyang
    Qinghua Daxue Xuebao/Journal of Tsinghua University, 2001, 41 (12): : 75 - 77
  • [9] 2-D Composite Model for Numerical Simulations of Nonlinear Waves
    齐鹏
    王永学
    邹志利
    ChinaOceanEngineering, 2000, (01) : 113 - 120
  • [10] Dynamic response of lined circular tunnel to plane harmonic waves
    Esmaeli, M
    Vahdani, S
    Noorzad, A
    TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY, 2006, 21 (05) : 511 - 519