Self-supervised Indoor 360-Degree Depth Estimation via Structural Regularization

被引:1
|
作者
Kong, Weifeng [1 ]
Zhang, Qiudan [1 ]
Yang, You [3 ]
Zhao, Tiesong [4 ]
Wu, Wenhui [2 ]
Wang, Xu [1 ]
机构
[1] Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen 518060, Peoples R China
[2] Shenzhen Univ, Coll Elect & Informat Engn, Shenzhen 518060, Peoples R China
[3] Huangzhong Univ Sci & Technol, Sch Elect Informat & Commun, Wuhan 430074, Peoples R China
[4] Fuzhou Univ, Coll Phys & Informat Engn, Fuzhou 350108, Peoples R China
基金
中国国家自然科学基金;
关键词
360 degrees image; Depth estimation; Self-supervised learning; Structure regularity; IMAGES;
D O I
10.1007/978-3-031-20868-3_32
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Estimating 360 degrees depth information has attracted considerable attention due to the fast development of emerging 360 degrees cameras. However, most researches only focus on dealing with the distortion of 360 degrees images without considering the geometric information of 360 degrees images, leading to poor performance. In this paper, we conduct to apply indoor structure regularities for self-supervised 360 degrees image depth estimation. Specifically, we carefully design two geometric constraints for efficient model optimization including dominant direction normal constraint and planar consistency depth constraint. The dominant direction normal constraint enables to align the normal of indoor 360 degrees images with the direction of vanishing points. The planar consistency depth constraint is utilized to fit the estimated depth of each pixel by its 3D plane. Hence, incorporating these two geometric constraints can further facilitate the generation of accurate depth results for 360 degrees images. Extensive experiments illustrate that our designed method improves delta(1) by an average of 4.82% compared to state-of-the-art methods on Matterport3D and Stanford2D3D datasets within 3D60.
引用
收藏
页码:438 / 451
页数:14
相关论文
共 50 条
  • [1] Distortion-Aware Self-Supervised Indoor 360°Depth Estimation via Hybrid Projection Fusion and Structural Regularities
    Wang, Xu
    Kong, Weifeng
    Zhang, Qiudan
    Yang, You
    Zhao, Tiesong
    Jiang, Jianmin
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 3998 - 4011
  • [2] StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimation
    Li, Boying
    Huang, Yuan
    Liu, Zeyu
    Zou, Danping
    Yu, Wenxian
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 12643 - 12653
  • [3] Spherical View Synthesis for Self-Supervised 360° Depth Estimation
    Zioulis, Nikolaos
    Karakottas, Antonis
    Zarpalas, Dimitrios
    Alvarez, Federico
    Daras, Petros
    2019 INTERNATIONAL CONFERENCE ON 3D VISION (3DV 2019), 2019, : 690 - 699
  • [4] SPDepth: Enhancing Self-Supervised Indoor Monocular Depth Estimation via Self-Propagation
    Guo, Xiaotong
    Zhao, Huijie
    Shao, Shuwei
    Li, Xudong
    Zhang, Baochang
    Li, Na
    FUTURE INTERNET, 2024, 16 (10)
  • [5] Iterative Feature Matching for Self-Supervised Indoor Depth Estimation
    Wei, Yi
    Guo, Hengkai
    Lu, Jiwen
    Zhou, Jie
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (06) : 3839 - 3852
  • [6] DEPTH ESTIMATION FROM STEREOSCOPIC 360-DEGREE VIDEO
    Wegner, Krzysztof
    Stankiewicz, Olgierd
    Grajek, Tomasz
    Domanski, Marek
    2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2018, : 2945 - 2948
  • [7] HI-Net: Boosting Self-Supervised Indoor Depth Estimation via Pose Optimization
    Wu, Guanghui
    Li, Kunhong
    Wang, Longguang
    Hu, Ruizhen
    Guo, Yulan
    Chen, Zengping
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (01) : 224 - 231
  • [8] Monocular Depth Estimation via Self-Supervised Self-Distillation
    Hu, Haifeng
    Feng, Yuyang
    Li, Dapeng
    Zhang, Suofei
    Zhao, Haitao
    SENSORS, 2024, 24 (13)
  • [9] PlaneDepth: Self-supervised Depth Estimation via Orthogonal Planes
    Wang, Ruoyu
    Yu, Zehao
    Gao, Shenghua
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 21425 - 21434
  • [10] Underwater self-supervised depth estimation
    Yang, Xuewen
    Zhang, Xing
    Wang, Nan
    Xin, Guoling
    Hu, Wenjie
    NEUROCOMPUTING, 2022, 514 : 362 - 373