Single crystalline InxGa1-xN layers on germanium by molecular beam epitaxy

被引:6
|
作者
Lieten, R. R. [1 ,2 ]
Tseng, W. -J. [1 ,2 ]
Yu, K. M. [3 ]
van de Graaf, W. [1 ]
Locquet, J. -P. [2 ]
Dekoster, J. [1 ]
Borghs, G. [1 ,2 ]
机构
[1] IMEC, B-3001 Louvain, Belgium
[2] Katholieke Univ Leuven, Dept Phys & Astron, B-3001 Louvain, Belgium
[3] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA
来源
CRYSTENGCOMM | 2013年 / 15卷 / 44期
基金
比利时弗兰德研究基金会;
关键词
INGAN FILMS; INN; PHOTOLUMINESCENCE; GROWTH;
D O I
10.1039/c3ce41483c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
InxGa1-xN (InGaN) alloys are predominantly grown by heteroepitaxy on foreign substrates. Most often Al2O3, SiC and Si are used as substrates, however this complicates vertical conduction from the InGaN surface to the substrate backside. Therefore we investigate the heteroepitaxial growth of InGaN layers on Ge substrates. Single crystalline InGaN was obtained and domain formation was suppressed by using a thin GaN buffer layer. The InGaN shows compressive strain, which follows from the lattice mismatch with the GaN buffer layer. The In distribution is uniform throughout the InGaN layer, with no significant In segregation within the layer. Only at the surface, in a very thin layer of 20 nm, strong In segregation is observed with about 50% In. InGaN/GaN/Ge diodes show vertical current conduction of 1 A cm(-2) at -2 V. InGaN grown on Ge is therefore promising for device applications with preferred vertical conduction.
引用
收藏
页码:9121 / 9127
页数:7
相关论文
共 50 条
  • [1] Microstructure of InxGa1-xN nanorods grown by molecular beam epitaxy
    Webster, R. F.
    Soundararajah, Q. Y.
    Griffiths, I. J.
    Cherns, D.
    Novikov, S. V.
    Foxon, C. T.
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2015, 30 (11)
  • [2] Band edge versus deep luminescence of InxGa1-xN layers grown by molecular beam epitaxy
    Grandjean, N
    Massies, J
    Leroux, M
    De Mierry, P
    APPLIED PHYSICS LETTERS, 1998, 72 (24) : 3190 - 3192
  • [3] Thermodynamic analysis of InxGa1-xN growth conditions in molecular beam epitaxy
    1600, (American Inst of Physics, Woodbury, NY, USA):
  • [4] Real time control of InxGa1-xN molecular beam epitaxy growth
    Grandjean, N
    Massies, J
    APPLIED PHYSICS LETTERS, 1998, 72 (09) : 1078 - 1080
  • [5] Thermodynamic analysis of InxGa1-xN growth conditions in molecular beam epitaxy
    Li, YQ
    Koukitu, A
    Seki, H
    JOURNAL OF APPLIED PHYSICS, 2000, 88 (01) : 571 - 575
  • [6] Thermodynamic analysis of InxGa1-xN growth conditions in molecular beam epitaxy
    1600, American Institute of Physics Inc. (88):
  • [7] Growth of compositionally uniform InxGa1-xN layers with low relaxation degree on GaN by molecular beam epitaxy
    Kang, Jingxuan
    Ruiz, Mikel Gomez
    Dinh, Duc Van
    Campbell, Aidan F.
    John, Philipp
    Auzelle, Thomas
    Trampert, Achim
    Laehnemann, Jonas
    Brandt, Oliver
    Geelhaar, Lutz
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2025, 58 (14)
  • [8] GROWTH OF INXGA1-XN AND INXAL1-XN ON GAAS METALORGANIC MOLECULAR-BEAM EPITAXY
    ABERNATHY, CR
    MACKENZIE, JD
    BHARATAN, SR
    JONES, KS
    PEARTON, SJ
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1995, 13 (03): : 716 - 718
  • [9] Domain structure in chemically ordered InxGa1-xN alloys grown by molecular beam epitaxy
    Doppalapudi, D
    Basu, SN
    Moustakas, TD
    JOURNAL OF APPLIED PHYSICS, 1999, 85 (02) : 883 - 886
  • [10] Full-composition-graded InxGa1-xN films grown by molecular beam epitaxy
    Zheng, X. T.
    Wang, T.
    Wang, P.
    Sun, X. X.
    Wang, D.
    Chen, Z. Y.
    Quach, P.
    Wang, Y. X.
    Yang, X. L.
    Xu, F. J.
    Qin, Z. X.
    Yu, T. J.
    Ge, W. K.
    Shen, B.
    Wang, X. Q.
    APPLIED PHYSICS LETTERS, 2020, 117 (18)