Extrapolation of stable random fields

被引:7
|
作者
Karcher, Wolfgang [1 ]
Shmileva, Elena [2 ]
Spodarev, Evgeny [1 ]
机构
[1] Univ Ulm, Inst Stochast, D-89081 Ulm, Germany
[2] St Petersburg State Univ, Chebyshev Lab, St Petersburg 199178, Russia
关键词
Extrapolation; Random field; Stable distribution; ASSOCIATION;
D O I
10.1016/j.jmva.2012.11.004
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we discuss three extrapolation methods for alpha-stable random fields with alpha is an element of (1, 2]. We justify them, giving proofs of the existence and uniqueness of the solutions for each method and providing sufficient conditions for path continuity. Two methods are based on minimizing the variability of the difference between the predictor and the theoretical value, whereas in the third approach we provide a new method that maximizes the covariation between these two quantities. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:516 / 536
页数:21
相关论文
共 50 条
  • [1] Extrapolation of Stationary Random Fields
    Spodarev, Evgeny
    Shmileva, Elena
    Roth, Stefan
    STOCHASTIC GEOMETRY, SPATIAL STATISTICS AND RANDOM FIELDS: MODELS AND ALGORITHMS, 2015, 2120 : 321 - 368
  • [2] FILTERING AND EXTRAPOLATION OF RANDOM FIELDS AND VECTORIAL PROCESSES
    RAMM, AG
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (07): : A708 - A709
  • [3] ONE PROBLEM OF LINEAR EXTRAPOLATION FOR RANDOM-FIELDS
    MASLYUKOVA, NA
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII MATEMATIKA, 1986, (11): : 77 - 79
  • [4] EXTRAPOLATION OF STATIONARY RANDOM FIELDS VIA LEVEL SETS
    Das, A.
    Makogin, V
    Spodarev, E.
    THEORY OF PROBABILITY AND MATHEMATICAL STATISTICS, 2022, : 85 - 103
  • [5] PROBLEM OF LINEAR EXTRAPOLATION FOR ONE CLASS OF HOMOGENEOUS RANDOM FIELDS
    MOKLYACH.MP
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1974, (06): : 515 - 518
  • [6] STABLE EXPLICIT DEPTH EXTRAPOLATION OF SEISMIC WAVE-FIELDS
    HALE, D
    GEOPHYSICS, 1991, 56 (11) : 1770 - 1777
  • [7] Decomposition of stationary α-stable random fields
    Rosinski, J
    ANNALS OF PROBABILITY, 2000, 28 (04): : 1797 - 1813
  • [8] Multivariate tempered stable random fields
    Kremer, D.
    Scheffler, H. -P.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 503 (02)
  • [9] Operator scaling stable random fields
    Bierme, Hermine
    Meerschaert, Mark M.
    Scheffler, Hans-Peter
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2007, 117 (03) : 312 - 332
  • [10] Random tessellations associated with max-stable random fields
    Dombry, Clement
    Kabluchko, Zakhar
    BERNOULLI, 2018, 24 (01) : 30 - 52