Copula analysis of mixture models

被引:31
|
作者
Vrac, M. [2 ]
Billard, L. [1 ]
Diday, E. [3 ]
Chedin, A. [4 ]
机构
[1] Univ Georgia, Dept Stat, Athens, GA 30602 USA
[2] Ctr Etud Saclay, Lab Sci Climat & Environm, IPSL CNRS CEA UVSQ, F-91191 Gif Sur Yvette, France
[3] Univ Paris 09, CEREMADE, F-75775 Paris, France
[4] Ecole Polytech, Dynam IPSL, Lab Meteorol, F-91128 Palaiseau, France
基金
美国国家科学基金会;
关键词
Classification of distributions; Copulas; Dynamical clustering; Data distributions; Estimation; Mixture model; MAXIMUM-LIKELIHOOD; EM ALGORITHM; BIVARIATE DISTRIBUTIONS; DECOMPOSITION;
D O I
10.1007/s00180-011-0266-0
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Contemporary computers collect databases that can be too large for classical methods to handle. The present work takes data whose observations are distribution functions (rather than the single numerical point value of classical data) and presents a computational statistical approach of a new methodology to group the distributions into classes. The clustering method links the searched partition to the decomposition of mixture densities, through the notions of a function of distributions and of multi-dimensional copulas. The new clustering technique is illustrated by ascertaining distinct temperature and humidity regions for a global climate dataset and shows that the results compare favorably with those obtained from the standard EM algorithm method.
引用
收藏
页码:427 / 457
页数:31
相关论文
共 50 条
  • [1] Copula analysis of mixture models
    M. Vrac
    L. Billard
    E. Diday
    A. Chédin
    Computational Statistics, 2012, 27 : 427 - 457
  • [2] On the Properties of Gaussian Copula Mixture Models
    Wan, Ke
    Kornhauser, Alain
    ADVANCES IN ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING, 2023, 3 (03): : 1444 - 1459
  • [3] TIME-VARYING MIXTURE COPULA MODELS WITH COPULA SELECTION
    Yang, Bingduo
    Cai, Zongwu
    Hafner, Christian
    Liu, Guannan
    STATISTICA SINICA, 2022, 32 (02) : 1049 - 1077
  • [4] Estimation method for mixture copula models in hydrological context
    Ben Nasr, I.
    Chebana, F.
    JOURNAL OF HYDROLOGY, 2022, 615
  • [5] Constraining kernel estimators in semiparametric copula mixture models
    Mazo, Gildas
    Averyanov, Yaroslav
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2019, 138 : 170 - 189
  • [6] GMCM: Unsupervised Clustering and Meta-Analysis Using Gaussian Mixture Copula Models
    Bilgrau, Anders E.
    Eriksen, Poul S.
    Rasmussen, Jakob G.
    Johnsen, Hans E.
    Dybkaer, Karen
    Bogsted, Martin
    JOURNAL OF STATISTICAL SOFTWARE, 2016, 70 (02): : 1 - 23
  • [7] Novel pruning and truncating of the mixture of vine copula clustering models
    Alanazi, Fadhah Amer
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [8] Copula based factorization in Bayesian multivariate infinite mixture models
    Burda, Martin
    Prokhorov, Artem
    JOURNAL OF MULTIVARIATE ANALYSIS, 2014, 127 : 200 - 213
  • [9] Semiparametric estimation and model selection for conditional mixture copula models
    Liu, Guannan
    Long, Wei
    Yang, Bingduo
    Cai, Zongwu
    SCANDINAVIAN JOURNAL OF STATISTICS, 2022, 49 (01) : 287 - 330
  • [10] Pair-copula based mixture models and their application in clustering
    Roy, Anandarup
    Parui, Swapan K.
    PATTERN RECOGNITION, 2014, 47 (04) : 1689 - 1697