Dense Affinity Propagation on Clusters of GPUs

被引:0
|
作者
Kurdziel, Marcin [1 ]
Boryczko, Krzysztof [1 ]
机构
[1] AGH Univ Sci & Technol, Fac Elect Engn Automat Comp Sci & Elect, Dept Comp Sci, PL-30059 Krakow, Poland
关键词
Affinity Propagation; multi-GPU implementation; clustering;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This article focuses on implementation of Affinity Propagation, a state of the art method for finding exemplars in sets of patterns, on clusters of Graphical Processing Units. When finding exemplars in dense, non-metric data Affinity Propagation has O(n(2)) memory complexity. This limits the size of problems that can fit in the Graphical Processing Unit memory. We show, however, that dense Affinity Propagation can be distributed on multiple Graphical Processing Units with low communication-to-computation ratio. By exploiting this favorable communication pattern we propose an implementation which can find exemplars in large, dense data sets efficiently, even when run over slow interconnect.
引用
收藏
页码:599 / 608
页数:10
相关论文
共 50 条
  • [1] Finding exemplars in dense data with affinity propagation on clusters of GPUs
    Kurdziel, Marcin
    Boryczko, Krzysztof
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2013, 25 (08): : 1137 - 1152
  • [2] Affinity Propagation Based CoMP Clusters for Dense Small Cell Networks with Backhaul Constraints
    Jinbo Liu
    Shaohui Sun
    Wireless Personal Communications, 2017, 97 : 4933 - 4949
  • [3] Affinity Propagation Based CoMP Clusters for Dense Small Cell Networks with Backhaul Constraints
    Liu, Jinbo
    Sun, Shaohui
    WIRELESS PERSONAL COMMUNICATIONS, 2017, 97 (04) : 4933 - 4949
  • [4] Exhaustive Key Search on Clusters of GPUs
    Barbieri, Davide
    Cardellini, Valeria
    Filippone, Salvatore
    PROCEEDINGS OF 2014 IEEE INTERNATIONAL PARALLEL & DISTRIBUTED PROCESSING SYMPOSIUM WORKSHOPS (IPDPSW), 2014, : 1161 - 1169
  • [5] Benchmarking GPUs to Tune Dense Linear Algebra
    Volkov, Vasily
    Demmel, James W.
    INTERNATIONAL CONFERENCE FOR HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS, 2008, : 499 - 509
  • [6] Defining objective clusters for rabies virus sequences using affinity propagation clustering
    Fischer, Susanne
    Freuling, Conrad M.
    Mueller, Thomas
    Pfaff, Florian
    Bodenhofer, Ulrich
    Hoeper, Dirk
    Fischer, Mareike
    Marston, Denise A.
    Fooks, Anthony R.
    Mettenleiter, Thomas C.
    Conraths, Franz J.
    Homeier-Bachmann, Timo
    PLOS NEGLECTED TROPICAL DISEASES, 2018, 12 (01):
  • [7] K-MEAP: Multiple Exemplars Affinity Propagation With Specified K Clusters
    Wang, Yangtao
    Chen, Lihui
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2016, 27 (12) : 2670 - 2682
  • [8] Redesigning Triangular Dense Matrix Computations on GPUs
    Charara, Ali
    Ltaief, Hatem
    Keyes, David
    EURO-PAR 2016: PARALLEL PROCESSING, 2016, 9833 : 477 - 489
  • [9] Globular clusters in dense clusters of galaxies
    Blakeslee, JP
    ASTRONOMICAL JOURNAL, 1999, 118 (04): : 1506 - 1525
  • [10] Constraint Rules and Matching Micro-clusters Based Affinity Propagation Clustering Algorithm
    Wang, Li-min
    Zhou, You
    Han, Xu-ming
    Wang, Yi-zhang
    Yu, Jing-lin
    Wang, Shuai
    STUDIES IN INFORMATICS AND CONTROL, 2020, 29 (03): : 353 - 362