Polynomial convexity and strong disk property

被引:3
|
作者
Abe, Makoto [1 ]
机构
[1] Kumamoto Univ, Sch Hlth Sci, Kumamoto 8620976, Japan
关键词
polynomially convex; rationally convex; strong disk property;
D O I
10.1016/j.jmaa.2005.08.026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
There exists an open set of C-n which is not polynomially convex and satisfies the strong disk property in C-n if n >= 2. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:32 / 36
页数:5
相关论文
共 50 条
  • [1] Uniform convexity, strong convexity and property UC
    Shunmugaraj, P.
    Thota, V.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 446 (02) : 1769 - 1775
  • [2] A polynomial algorithm for the strong Helly property
    Bretto, A
    Ubéda, S
    Zerovnik, J
    INFORMATION PROCESSING LETTERS, 2002, 81 (01) : 55 - 57
  • [3] Polynomial Convexity
    Stacho, Laszlo
    ACTA SCIENTIARUM MATHEMATICARUM, 2008, 74 (1-2): : 457 - 458
  • [4] Convexity and polynomial equations in Banach spaces with the Radon-Nikodym property
    Pérez, EAS
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2001, 8 (04) : 699 - 709
  • [5] POLYNOMIAL CONVEXITY, RATIONAL CONVEXITY, AND CURRENTS
    DUVAL, J
    SIBONY, N
    DUKE MATHEMATICAL JOURNAL, 1995, 79 (02) : 487 - 513
  • [6] Strong Disk Property for Domains in Open Riemann Surfaces
    Abe, Makoto
    Nakamura, Gou
    FILOMAT, 2016, 30 (07) : 1711 - 1716
  • [7] A CONVEXITY PROPERTY
    FREESE, RW
    PACIFIC JOURNAL OF MATHEMATICS, 1966, 18 (02) : 237 - &
  • [8] ON A CONVEXITY PROPERTY
    Simic, Slavko
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2016, 40 (02): : 166 - 171
  • [9] Generalized SOS-Convexity and Strong Duality with SDP Dual Programs in Polynomial Optimization
    Jeyakumar, V.
    Lee, G. M.
    Lee, J. H.
    JOURNAL OF CONVEX ANALYSIS, 2015, 22 (04) : 999 - 1023
  • [10] A TOPOLOGICAL CHARACTERIZATION OF THE STRONG DISK PROPERTY ON OPEN RIEMANN SURFACES
    Abe, Makoto
    Nakamura, Gou
    Shiga, Hiroshige
    KODAI MATHEMATICAL JOURNAL, 2019, 42 (03) : 587 - 592