Deformations of dispersionless KdV hierarchies

被引:4
|
作者
Strachan, IAB [1 ]
机构
[1] Univ Hull, Dept Math, Kingston Upon Hull HU6 7RX, N Humberside, England
关键词
integrable systems; equations of hydrodynamic type; Hamiltonian structures; deformation theory;
D O I
10.1023/A:1013370516221
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The obstructions to the existence of a hierarchy of hydrodynamic conservation laws are studied for a multicomponent dispersionless KdV system. It is proved that if the lowest order obstruction vanishes then all higher obstructions automatically vanish, if and only the underlying algebra is a Jordan algebra. Deformations of these multicomponent dispersionless KdV-type equations are also studied. It is shown that no new obstructions appear and, hence, that the existence of a fully deformed hierarchy depends only on the existence of a single purely hydrodynamic conservation law.
引用
收藏
页码:129 / 140
页数:12
相关论文
共 50 条
  • [1] Deformations of Dispersionless KdV Hierarchies
    I. A. B. Strachan
    Letters in Mathematical Physics, 2001, 58 : 129 - 140
  • [2] Coisotropic Deformations of Associative Algebras and Dispersionless Integrable Hierarchies
    B. G. Konopelchenko
    F. Magri
    Communications in Mathematical Physics, 2007, 274 : 627 - 658
  • [3] Coisotropic deformations of associative algebras and dispersionless integrable hierarchies
    Konopelchenko, B. G.
    Magri, F.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 274 (03) : 627 - 658
  • [4] Alternative dispersionless limit of N=2 supersymmetric KdV-type hierarchies
    Das, A
    Krivonos, S
    Popowicz, Z
    PHYSICS LETTERS A, 2002, 302 (2-3) : 87 - 93
  • [5] Dispersionless fermionic KdV
    Barcelos-Neto, J
    Constandache, A
    Das, A
    PHYSICS LETTERS A, 2000, 268 (4-6) : 342 - 351
  • [6] Backlund transformations for the constrained dispersionless hierarchies and dispersionless hierarchies with self-consistent sources
    Xiao, T
    Zeng, YB
    INVERSE PROBLEMS, 2006, 22 (03) : 869 - 879
  • [7] Lowner equations and dispersionless hierarchies
    Takasaki, Kanehisa
    Takebe, Takashi
    DIFFERENTIAL GEOMETRY AND PHYSICS, 2006, 10 : 438 - +
  • [8] Lowner equations and dispersionless hierarchies
    Takebe, Takashi
    Teo, Lee-Peng
    Zabrodin, Anton
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (37): : 11479 - 11501
  • [9] INTEGRABLE HIERARCHIES AND DISPERSIONLESS LIMIT
    TAKASAKI, K
    TAKEBE, T
    REVIEWS IN MATHEMATICAL PHYSICS, 1995, 7 (05) : 743 - 808
  • [10] Sigma function and dispersionless hierarchies
    Previato, E.
    XXIX WORKSHOP ON GEOMETRIC METHODS IN PHYSICS, 2010, 1307 : 140 - 156