On the complexity of the Monte Carlo method for incremental PageRank

被引:6
|
作者
Lofgren, Peter [1 ]
机构
[1] Stanford Univ, Dept Comp Sci, Stanford, CA 94305 USA
关键词
Analysis of algorithms; Graph algorithms; Monte Carlo PageRank;
D O I
10.1016/j.ipl.2013.11.006
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This note extends the analysis of incremental PageRank in Bahmani et al. (2010) [1]. In that work, the authors prove a running time of O(nR/epsilon In-2(m)) to keep PageRank updated over m edge arrivals in a graph with n nodes when the algorithm stores R random walks per node and the PageRank teleport probability is epsilon. To prove this running time, they assume that edges arrive in a random order, and leave it to future work to extend their running time guarantees to adversarial edge arrival. In this note, we show that the random edge order assumption is necessary by exhibiting a graph and adversarial edge arrival order in which the running time is Omega(Rnm(lg3/2 (1-epsilon)). More generally, for any integer d >= 2, we construct a graph and adversarial edge order in which the running time is Omega(Rnm(logd(Hd(1-epsilon)))), where H-d is the dth harmonic number. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:104 / 106
页数:3
相关论文
共 50 条
  • [1] Monte Carlo Based Incremental PageRank on Evolving Graphs
    Liao, Qun
    Jiang, ShuangShuang
    Yu, Min
    Yang, Yulu
    Li, Tao
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2017, PT I, 2017, 10234 : 356 - 367
  • [2] A Load Balancing Strategy for Monte Carlo Method in PageRank Problem
    Shao, Bo
    Lai, Siyan
    Yang, Bo
    Xu, Ying
    Lin, Xiaola
    PARALLEL ARCHITECTURE, ALGORITHM AND PROGRAMMING, PAAP 2017, 2017, 729 : 594 - 609
  • [3] Residual entropy from the temperature incremental Monte Carlo method
    Dai, Zenan
    Xu, Xiao Yan
    PHYSICAL REVIEW B, 2025, 111 (08)
  • [4] Monte Carlo Based Personalized PageRank on Dynamic Networks
    Zhang Junchao
    Chen Junjie
    Song, Jiancheng
    Zhao, Rong-Xiang
    INTERNATIONAL JOURNAL OF DISTRIBUTED SENSOR NETWORKS, 2013,
  • [5] An Efficient Quantum Monte Carlo Method for Reducing Circuit Complexity
    Guo, Lengyan
    Yang, Yingli
    Hou, Xiaokai
    Wang, Xiaoting
    2024 14TH ASIAN CONTROL CONFERENCE, ASCC 2024, 2024, : 1946 - 1951
  • [6] Incremental Iteration Method for Fast PageRank Computation
    Kim, Kyung Soo
    Choi, Yong Suk
    ACM IMCOM 2015, Proceedings, 2015,
  • [7] Linear Complexity and High Scalability of a Parallel Monte Carlo Simulation Method
    Amaro-Rico, Guillermo
    Botello-Rionda, Salvador
    Carrillo-Tripp, Mauricio
    2013 EIGHTH INTERNATIONAL CONFERENCE ON P2P, PARALLEL, GRID, CLOUD AND INTERNET COMPUTING (3PGCIC 2013), 2013, : 683 - 687
  • [8] Monte Carlo complexity of parametric integration
    Heinrich, S
    Sindambiwe, E
    JOURNAL OF COMPLEXITY, 1999, 15 (03) : 317 - 341
  • [9] Monte Carlo methods in pagerank computation: When one iteration is sufficient
    Avrachenkov, K.
    Litvak, N.
    Nemirovsky, D.
    Osipova, N.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (02) : 890 - 904
  • [10] Monte Carlo Subspace Method: An Incremental Approach to High-Dimensional Data Classification
    Sakai, Tomoya
    19TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOLS 1-6, 2008, : 2978 - 2981