Design and Simulation of InGaN p-n Junction Solar Cell

被引:35
|
作者
Mesrane, A. [1 ]
Rahmoune, F. [1 ]
Mahrane, A. [2 ]
Oulebsir, A. [3 ]
机构
[1] Univ Mhamed Bougara Boumerdes, Lab LIMOSE, Boumerdes 35000, Algeria
[2] CDER, UDES, Bou Ismail 42415, Tipaza, Algeria
[3] USTHB, Lab Elect Quant, Fac Phys, Bab Ezzouar 16111, Alger, Algeria
关键词
2-JUNCTION;
D O I
10.1155/2015/594858
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The tunability of the InGaN band gap energy over a wide range provides a good spectral match to sunlight, making it a suitable material for photovoltaic solar cells. The main objective of this work is to design and simulate the optimal InGaN single-junction solar cell. For more accurate results and best configuration, the optical properties and the physical models such as the Fermi-Dirac statistics, Auger and Shockley-Read-Hall recombination, and the doping and temperature-dependent mobility model were taken into account in simulations. The single-junction In0.622Ga0.378N (Eg = 1.39 eV) solar cell is the optimal structure found. It exhibits, under normalized conditions (AM1.5G, 0.1 W/cm(2), and 300K), the following electrical parameters: J(sc) = 32.6791 mA/cm(2), V-oc = 0.94091 volts, FF = 86.2343%, and eta = 26.5056%. It was noticed that the minority carrier lifetime and the surface recombination velocity have an important effect on the solar cell performance. Furthermore, the investigation results show that the In0.622Ga0.378N solar cell efficiency was inversely proportional with the temperature.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Modeling of InGaN p-n junction solar cells
    Feng, Shih-Wei
    Lai, Chih-Ming
    Tsai, Chin-Yi
    Su, Yu-Ru
    Tu, Li-Wei
    OPTICAL MATERIALS EXPRESS, 2013, 3 (10): : 1777 - 1788
  • [2] Design and Realization of Wide-Band-Gap (∼2.67 eV) InGaN p-n Junction Solar Cell
    Jampana, Balakrishnam R.
    Melton, Andrew G.
    Jamil, Muhammad
    Faleev, Nikolai N.
    Opila, Robert L.
    Ferguson, Ian T.
    Honsberg, Christiana B.
    IEEE ELECTRON DEVICE LETTERS, 2010, 31 (01) : 32 - 34
  • [3] InGaN/GaN MQD p-n junction photodiodes
    Hung, SC
    Su, YK
    Chang, SJ
    Ji, LW
    Shen, DS
    Huang, CH
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2005, 30 (1-2): : 13 - 16
  • [4] InGaN/GaN MQW p-n junction photodetectors
    Chiou, YZ
    Su, YK
    Chang, SJ
    Lin, YC
    Chang, CS
    Chen, CH
    SOLID-STATE ELECTRONICS, 2002, 46 (12) : 2227 - 2229
  • [5] Analytical study on the temperature dependence of InGaN p-n junction solar cell under concentrated light intensity
    Mesrane, A.
    Mahrane, A.
    Rahmoune, F.
    Oulebsir, A.
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2017, 123 (02):
  • [6] Design and Evaluation of an Educational Simulation for the P-N Junction Diode
    Adam, Gina C.
    Lord, Susan M.
    2017 27TH EAEEIE ANNUAL CONFERENCE (EAEEIE), 2017,
  • [7] Comparison of Ge, InGaAs p-n junction solar cell
    Korun, M.
    Navruz, T. S.
    INTERNATIONAL PHYSICS CONFERENCE AT THE ANATOLIAN PEAK (IPCAP2016), 2016, 707
  • [8] p-n junction heterostructure device physics model of a four junction solar cell
    Griggs, Melissa J.
    Kayes, Brendan M.
    Atwater, Harry A.
    HIGH AND LOW CONCENTRATION FOR SOLAR ELECTRIC APPLICATIONS, 2006, 6339
  • [9] Influence of Laser Cutting on P-N Junction Behavior of Solar Cell
    Skarvada, P.
    Tomanek, P.
    Grmela, L.
    10TH IMEKO SYMPOSIUM: LASER METROLOGY FOR PRECISION MEASUREMENT AND INSPECTION IN INDUSTRY (LMPMI) 2011, 2011, 2156 : 291 - 296
  • [10] Si Thin Film Solar Cell with Asymmetric P-N Junction
    Ko, Myung-Dong
    Baek, Chang-Ki
    Rim, Taiuk
    Park, Sooyoung
    Jeong, Yoon-Ha
    2012 38TH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), 2012, : 1212 - 1216