Satisfiability of Acyclic and Almost Acyclic CNF Formulas

被引:2
|
作者
Ordyniak, Sebastian [1 ]
Paulusma, Daniel [2 ]
Szeider, Stefan [1 ]
机构
[1] Vienna Univ Technol, Inst Informat Syst, A-1040 Vienna, Austria
[2] Univ Durham, Sch Engn & Comp Sci, Durham DH1 3LE, England
基金
英国工程与自然科学研究理事会;
关键词
Satisfiability; chordal bipartite graphs; beta-acyclic hypergraphs; backdoor sets; parameterized complexity; LINEAR-TIME ALGORITHMS; HYPERTREE DECOMPOSITIONS; HYPERGRAPHS; WIDTH; COMPLEXITY;
D O I
10.4230/LIPIcs.FSTTCS.2010.84
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We study the propositional satisfiability problem (SAT) on classes of CNF formulas (formulas in Conjunctive Normal Form) that obey certain structural restrictions in terms of their hypergraph structure, by associating to a CNF formula the hypergraph obtained by ignoring negations and considering clauses as hyperedges on variables. We show that satisfiability of CNF formulas with so-called "beta-acyclic hypergraphs" can be decided in polynomial time. We also study the parameterized complexity of SAT for "almost" beta-acyclic instances, using as parameter the formula's distance from being beta-acyclic. As distance we use the size of smallest strong backdoor sets and the beta-hypertree width. As a by-product we obtain the W[1]-hardness of SAT parameterized by the (undirected) clique-width of the incidence graph, which disproves a conjecture by Fischer, Makowsky, and Ravve (Discr. Appl. Math. 156, 2008).
引用
收藏
页码:84 / 95
页数:12
相关论文
共 50 条
  • [1] Satisfiability of acyclic and almost acyclic CNF formulas
    Ordyniak, Sebastian
    Paulusma, Daniel
    Szeider, Stefan
    THEORETICAL COMPUTER SCIENCE, 2013, 481 : 85 - 99
  • [2] Satisfiability of Acyclic and almost Acyclic CNF Formulas (II)
    Ordyniak, Sebastian
    Paulusma, Daniel
    Szeider, Stefan
    THEORY AND APPLICATIONS OF SATISFIABILITY TESTING - SAT 2011, 2011, 6695 : 47 - 60
  • [3] Understanding Model Counting for β-acyclic CNF-formulas
    Brault-Baron, Johann
    Capelli, Florent
    Mengel, Stefan
    32ND INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE (STACS 2015), 2015, 30 : 143 - 156
  • [4] Linear CNF formulas and satisfiability
    Porschen, Stefan
    Speckenmeyer, Ewald
    Zhao, Xishun
    DISCRETE APPLIED MATHEMATICS, 2009, 157 (05) : 1046 - 1068
  • [5] Exact satisfiability of linear CNF formulas
    Schuh, Bernd R.
    DISCRETE APPLIED MATHEMATICS, 2018, 251 : 1 - 4
  • [6] The satisfiability problem in regular CNF-formulas
    F. Manyà
    R. Béjar
    G. Escalada-Imaz
    Soft Computing, 1998, 2 (3) : 116 - 123
  • [7] ALMOST ACYCLIC MAPS OF MANIFOLDS
    KWUN, KW
    RAYMOND, F
    AMERICAN JOURNAL OF MATHEMATICS, 1964, 86 (03) : 638 - &
  • [8] Satisfiability threshold for random XOR-CNF formulas
    Creignou, Nadia
    Daude, Herve
    Discrete Applied Mathematics, 1999, 96-97 : 41 - 53
  • [9] Satisfiability threshold for random XOR-CNF formulas
    Creignou, N
    Daude, H
    DISCRETE APPLIED MATHEMATICS, 1999, 97 : 41 - 53
  • [10] Acyclic Minimality by Construction-Almost
    Pulungan, Reza
    Hermanns, Holger
    SIXTH INTERNATIONAL CONFERENCE ON THE QUANTITATIVE EVALUATION OF SYSTEMS, PROCEEDINGS, 2009, : 63 - +