Modeling of one-dimensional nonlinear periodic structures by direct integration of Maxwell's equations in the frequency domain

被引:0
|
作者
Petrácek, J [1 ]
机构
[1] Brno Univ Technol, Brno 61669, Czech Republic
关键词
Kerr nonlinearity; nonlinear optics; nonlinear periodic structures; optical bistability;
D O I
暂无
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A simple numerical method for direct solving Maxwell's equations in the frequency domain is described. The method is applied to the modelling of one-dimensional nonlinear periodic structures.
引用
收藏
页码:141 / 146
页数:6
相关论文
共 50 条
  • [1] PERIODIC STRUCTURES IN A ONE-DIMENSIONAL NONLINEAR LATTICE
    DINDA, PT
    COQUET, E
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1990, 2 (33) : 6953 - 6963
  • [2] Nonlinear Propagation of Light in One-Dimensional Periodic Structures
    R. H. Goodman
    M. I. Weinstein
    P. J. Holmes
    Journal of Nonlinear Science, 2001, 11 : 123 - 168
  • [3] Nonlinear propagation of light in one-dimensional periodic structures
    Goodman, RH
    Weinstein, MI
    Holmes, PJ
    JOURNAL OF NONLINEAR SCIENCE, 2001, 11 (02) : 123 - 168
  • [4] Frequency-domain simulation of electromagnetic wave propagation in one-dimensional nonlinear structures
    Petracek, Jiri
    OPTICS COMMUNICATIONS, 2006, 265 (01) : 331 - 335
  • [5] Localized modes in one-dimensional nonlinear periodic photonic structures
    Apalkov, V. M.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2008, 20 (27)
  • [6] Direct and inverse problems for nonlinear one-dimensional poroelasticity equations
    Imomnazarov, Kh. Kh.
    Imomnazarov, Sh. Kh.
    Korobov, P. V.
    Kholmurodov, A. E.
    DOKLADY MATHEMATICS, 2014, 89 (02) : 250 - 252
  • [7] Direct and inverse problems for nonlinear one-dimensional poroelasticity equations
    Kh. Kh. Imomnazarov
    Sh. Kh. Imomnazarov
    P. V. Korobov
    A. E. Kholmurodov
    Doklady Mathematics, 2014, 89 : 250 - 252
  • [8] PERIODIC-SOLUTIONS OF ONE-DIMENSIONAL NONLINEAR SCHRODINGER-EQUATIONS
    BRULL, L
    KAPELLEN, HJ
    ACTA MATHEMATICA HUNGARICA, 1989, 54 (3-4) : 191 - 195
  • [9] Domain decomposition method for Maxwell's equations:: Scattering off periodic structures
    Schaedle, Achim
    Zschiedrich, Lin
    Burger, Sven
    Klose, Roland
    Schmidt, Frank
    JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 226 (01) : 477 - 493
  • [10] Maxwell's equations in periodic chiral structures
    Ammari, H
    Bao, G
    MATHEMATISCHE NACHRICHTEN, 2003, 251 : 3 - 18