COUPLED CELL NETWORKS: HOPF BIFURCATION AND INTERIOR SYMMETRY

被引:0
|
作者
Antoneli, Fernando [1 ]
Dias, Ana [2 ]
Paiva, Rui [3 ]
机构
[1] Univ Fed Sao Paulo UNIFESP, Escola Paulista Med, Rua Botucatu 740, BR-04023900 Sao Paulo, Brazil
[2] Univ Porto, Ctr Matemat, Dept Matemat, P-4169007 Oporto, Portugal
[3] Univ Porto, Ctr Matemat, Inst Politecn Leiria, Escola Super Tecnol & Gestao, P-4169007 Oporto, Portugal
关键词
Hopf bifurcation; center manifold reduction; coupled cell systems;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider interior symmetric coupled cell networks where a group of permutations of a subset of cells partially preserves the network structure. In this setup, the full analogue of the Equivariant Hopf Theorem for networks with symmetries was obtained by Antoneli, Dias and Paiva (Hopf bifurcation in coupled cell networks with interior symmetries, SIAM J. Appl. Dynam. Sys. 7 (2008) 220-248). In this work we present an alternative proof of this result using center manifold reduction.
引用
收藏
页码:71 / 78
页数:8
相关论文
共 50 条
  • [1] Hopf bifurcation in coupled cell networks with interior symmetries
    Antoneli, Fernando
    Dias, Ana Paula S.
    Paiva, Rui C.
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2008, 7 (01): : 220 - 248
  • [2] Interior symmetry and local bifurcation in coupled cell networks
    Golubitsky, M
    Pivato, M
    Stewart, I
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2004, 19 (04): : 389 - 407
  • [3] Hopf Bifurcation in Symmetric Networks of Coupled Oscillators with Hysteresis
    Balanov, Z.
    Krawcewicz, W.
    Rachinskii, D.
    Zhezherun, A.
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2012, 24 (04) : 713 - 759
  • [4] Hopf Bifurcation in Symmetric Networks of Coupled Oscillators with Hysteresis
    Z. Balanov
    W. Krawcewicz
    D. Rachinskii
    A. Zhezherun
    Journal of Dynamics and Differential Equations, 2012, 24 : 713 - 759
  • [5] Hamiltonian Hopf Bifurcation with Symmetry
    Pascal Chossat
    Juan-Pablo Ortega
    Tudor S. Ratiu
    Archive for Rational Mechanics and Analysis, 2002, 163 : 1 - 33
  • [6] Hamiltonian Hopf bifurcation with symmetry
    Chossat, P
    Ortega, JP
    Ratiu, TS
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2002, 163 (01) : 1 - 33
  • [7] Hopf bifurcation with the symmetry of the square
    Swift, James W.
    NONLINEARITY, 1988, 1 (02) : 333 - 377
  • [8] Induction of Hopf bifurcation and oscillation death by delays in coupled networks
    Cheng, Chang-Yuan
    PHYSICS LETTERS A, 2009, 374 (02) : 178 - 185
  • [9] Bifurcation in coupled Hopf oscillators
    Sterpu, Mihaela
    Rocsoreanu, Carmen
    MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 835 : 133 - +
  • [10] Hopf bifurcation with SN-symmetry
    Dias, Ana Paula S.
    Rodrigues, Ana
    NONLINEARITY, 2009, 22 (03) : 627 - 666