Development of Convolutional Neural Networks to identify bone metastasis for prostate cancer patients in bone scintigraphy

被引:22
|
作者
Papandrianos, Nikolaos [1 ]
Papageorgiou, Elpiniki, I [1 ,3 ]
Anagnostis, Athanasios [2 ,3 ]
机构
[1] Univ Thessaly, Fac Technol, Dept Energy Syst, Geopolis Campus,Larissa Trikala Ring Rd, Larisa 41500, Greece
[2] Univ Thessaly, Comp Sci & Telecommun Dept, Lamia 35131, Greece
[3] Ctr Res & Technol Hellas, Inst Bioecon & Agritechnol, Thessaloniki, Greece
关键词
Bone metastasis; Prostate cancer; Nuclear imaging; Bone scintigraphy; Deep learning; Image classification; Convolutional Neural Networks; COMPUTER-AIDED DIAGNOSIS;
D O I
10.1007/s12149-020-01510-6
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Objective The main aim of this work is to build a robust Convolutional Neural Network (CNN) algorithm that efficiently and quickly classifies bone scintigraphy images, by determining the presence or absence of prostate cancer metastasis. Methods CNN, widely applied in medical image classification, was used for bone scintigraphy image classification. The retrospective study included 778 sequential male patients who underwent whole-body bone scans. A nuclear medicine physician classified all the cases into 3 categories: (1) normal, (2) malignant, and (3) degenerative, which were used as the gold standard. Results An efficient CNN architecture was built, based on CNN exploration performance, achieving high prediction accuracy. The results showed that the method is sufficiently precise when it comes to differentiating a bone metastasis from other either degenerative changes or normal tissue (overall classification accuracy = 91.42% +/- 1.64%). To strengthen the outcomes of this study the authors further compared the best performing CNN method to other popular CNN architectures for medical imaging, like ResNet50, VGG16 and GoogleNet, as reported in the literature. Conclusions The prediction results reveal the efficacy of the proposed CNN-based approach and its ability for an easier and more precise interpretation of whole-body images in bone metastasis diagnosis for prostate cancer patients in nuclear medicine. This leads to marked effects on the diagnostic accuracy and decision-making regarding the treatment to be applied.
引用
收藏
页码:824 / 832
页数:9
相关论文
共 50 条
  • [1] Development of Convolutional Neural Networks to identify bone metastasis for prostate cancer patients in bone scintigraphy
    Nikolaos Papandrianos
    Elpiniki I. Papageorgiou
    Athanasios Anagnostis
    Annals of Nuclear Medicine, 2020, 34 : 824 - 832
  • [2] Bone metastasis classification in bone scintigraphy using densely-connected convolutional neural networks
    Papandrianos, N.
    Papageorgiou, E. I.
    Anagnostis, A.
    Feleki, A.
    Papageorgiou, K.
    Apostolopoulos, D. J.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2020, 47 (SUPPL 1) : S406 - S407
  • [3] Bone metastasis classification using whole body images from prostate cancer patients based on convolutional neural networks application
    Papandrianos, Nikolaos
    Papageorgiou, Elpiniki
    Anagnostis, Athanasios
    Papageorgiou, Konstantinos
    PLOS ONE, 2020, 15 (08):
  • [4] Efficient Bone Metastasis Diagnosis in Bone Scintigraphy Using a Fast Convolutional Neural Network Architecture
    Papandrianos, Nikolaos
    Papageorgiou, Elpiniki
    Anagnostis, Athanasios
    Papageorgiou, Konstantinos
    DIAGNOSTICS, 2020, 10 (08)
  • [5] Predictive value of serum prostate specific antigen in detecting bone metastasis in prostate cancer patients using bone scintigraphy
    Kamaleshwaran, Koramadai Karuppusamy
    Mittal, Bhagwant Rai
    Harisankar, Chidambaram Natrajan Balasubramanian
    Bhattacharya, Anish
    Singh, Shrawan Kumar
    Mandal, Arup K.
    INDIAN JOURNAL OF NUCLEAR MEDICINE, 2012, 27 (02): : 81 - 84
  • [6] Detection of bone metastasis of prostate cancer - Comparison of whole-body MRI and bone scintigraphy
    Ketelsen, D.
    Raethke, M.
    Aschoff, P.
    Merseburger, A. S.
    Lichy, M. P.
    Reimold, M.
    Claussen, C. D.
    Schlemmer, H.-P.
    ROFO-FORTSCHRITTE AUF DEM GEBIET DER RONTGENSTRAHLEN UND DER BILDGEBENDEN VERFAHREN, 2008, 180 (08): : 746 - 752
  • [7] The value of bone scintigraphy in therapy response monitoring and prognosis of bone metastasis from lung cancer or prostate cancer
    Pan Yifan
    Liu Jianjun
    Huang Gang
    Ma Yubo
    JOURNAL OF NUCLEAR MEDICINE, 2011, 52
  • [8] Automatic prediction model of overall survival in prostate cancer patients with bone metastasis using deep neural networks
    Wang, Zhongxiao
    Xiong, Tianyu
    Jiang, Mingxin
    Cui, Yun
    Qian, Xiaosong
    Su, Yao
    Zhang, Xiaolei
    Xu, Shiqi
    Wen, Dong
    Dong, Xianling
    Yang, Minfu
    Niu, Yinong
    ONCOLOGIE, 2023, 25 (05) : 519 - 527
  • [9] Bone metastasis in prostate cancer
    Moltzahn, F.
    Thalmann, G. N.
    UROLOGE, 2012, 51 (01): : 20 - +
  • [10] WHEN SHOULD WE PERFORMA A BONE SCINTIGRAPHY IN PATIENTS WITH NEW DIAGNOSIS OF ASYMPTOMATIC PROSTATE CANCER IN ORDER TO DETECT BONE METASTASIS?
    Marquez-Lopez, Javier
    Gomez-Gomez, Enrique
    Anaya-Henares, Fernando
    Robles-Casilda, Rafael
    Jose Requena-Tapia, Maria
    ARCHIVOS ESPANOLES DE UROLOGIA, 2015, 68 (02): : 135 - 141