Inverse analysis of heat conduction problems with relatively long heat treatment

被引:12
|
作者
Lee, Sen-Yung [1 ]
Yan, Qian-Zhi [1 ]
机构
[1] Natl Cheng Kung Univ, Dept Mech Engn, Tainan 701, Taiwan
关键词
Inverse heat conduction; Shifting function method; Half-range expansions; Least-squares method; HOT SURFACE; TEMPERATURE;
D O I
10.1016/j.ijheatmasstransfer.2016.10.003
中图分类号
O414.1 [热力学];
学科分类号
摘要
This paper proposes a solution method for one-dimensional inverse heat conduction problems that require a relatively long time. A hybrid technique is applied to analyze laser surface heating and spray cooling on a hot surface. In the present study, the unknown temperature in half-range expansions form is assumed, and the shifting function method is used to obtain an analytic solution. The coefficients of the half-range expansions could be determined with the least-squares method in conjunction with the analytic solution and measured temperatures. Mathematical and experimental examples are given to illustrate the analyses. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:401 / 410
页数:10
相关论文
共 50 条
  • [1] Stability analysis for inverse heat conduction problems
    Ling, Xianwu
    Atluri, S. N.
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2006, 13 (03): : 219 - 228
  • [2] A global time treatment for inverse heat conduction problems
    Frankel, JI
    Keyhani, M
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 1997, 119 (04): : 673 - 683
  • [3] Global time treatment for inverse heat conduction problems
    Frankel, J.I.
    Keyhani, M.
    Journal of Heat Transfer, 1997, 119 (04): : 673 - 683
  • [4] A technique for uncertainty analysis for inverse heat conduction problems
    Blackwell, Ben
    Beck, James V.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2010, 53 (04) : 753 - 759
  • [5] Finite element analysis for inverse heat conduction problems
    Nippon Kikai Gakkai Ronbunshu, B, 608 (1320-1326):
  • [6] A finite element analysis for inverse heat conduction problems
    Qiang Bai
    Fujita, Y.
    Heat Transfer - Japanese Research, 1997, 26 (06): : 345 - 359
  • [7] On Elliptic Inverse Heat Conduction Problems
    Tadi, M.
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2017, 139 (07):
  • [8] Solving the inverse heat conduction problems with the use of heat functions
    Cialkowski, MJ
    Futakiewicz, S
    Hozejowski, L
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2000, 80 : S673 - S674
  • [9] Sensitivity coefficients and heat polynomials in the inverse heat conduction problems
    Kruk, B
    Sokala, M
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2000, 80 : S693 - S694
  • [10] A numerical study of inverse heat conduction problems
    Shen, SY
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1999, 38 (7-8) : 173 - 188