Contributions to zero-sum problems

被引:43
|
作者
Adhikari, SD
Chen, YG
Friedlander, JB
Konyagin, SV
Pappalardi, F
机构
[1] Harish Chandra Res Inst, Allahabad 211019, Uttar Pradesh, India
[2] Nanjing Normal Univ, Dept Math, Nanjing 210097, Peoples R China
[3] Univ Toronto, Dept Math, Toronto, ON M5S 3G3, Canada
[4] Moscow MV Lomonosov State Univ, Dept Mech & Math, Moscow 119992, Russia
[5] Univ Roma Tre, Dipartimento Matemat, I-00146 Rome, Italy
关键词
zero-sum problems;
D O I
10.1016/j.disc.2005.11.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A prototype of zero-sum theorems, the well-known theorem of Erdos, Ginzburg and Ziv says that for any positive integer n, any sequence a(1), a(2),..., a(2n-1) of (2n-1) integers has a subsequence of n elements whose sum is 0 modulo n. Appropriate generalizations of the question, especially that for (Z/pZ)(d), generated a lot of research and still have challenging open questions. Here we propose a new generalization of the Erdos-Ginzburg-Ziv theorem and prove it in some basic cases. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 50 条
  • [1] Zero-sum problems - A survey
    Caro, Y
    DISCRETE MATHEMATICS, 1996, 152 (1-3) : 93 - 113
  • [2] Problems in zero-sum combinatorics
    Caro, Y
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1997, 55 : 427 - 434
  • [3] Zero-sum problems - a survey
    Discrete Math, 1-3 (93):
  • [4] Inverse zero-sum problems
    Gao, Weidong
    Geroldinger, Alfred
    Schmid, Wolfgang A.
    ACTA ARITHMETICA, 2007, 128 (03) : 245 - 279
  • [5] Remarks on some zero-sum problems
    Das Adhikari, S
    Rath, P
    EXPOSITIONES MATHEMATICAE, 2003, 21 (02) : 185 - 191
  • [6] About Some Zero-Sum Problems
    Borbely, Jozsef
    2018 IEEE 12TH INTERNATIONAL SYMPOSIUM ON APPLIED COMPUTATIONAL INTELLIGENCE AND INFORMATICS (SACI), 2018, : 521 - 525
  • [7] Inverse zero-sum problems III
    Gao, Weidong
    Geroldinger, Alfred
    Grynkiewicz, David J.
    ACTA ARITHMETICA, 2010, 141 (02) : 103 - 152
  • [8] Zero-sum problems with congruence conditions
    Geroldinger, A.
    Grynkiewicz, D. J.
    Schmid, W. A.
    ACTA MATHEMATICA HUNGARICA, 2011, 131 (04) : 323 - 345
  • [9] Inverse zero-sum problems II
    Schmid, Wolfgang A.
    ACTA ARITHMETICA, 2010, 143 (04) : 333 - 343
  • [10] Zero-sum problems with subgroup weights
    Adhikari, S. D.
    Ambily, A. A.
    Sury, B.
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2010, 120 (03): : 259 - 266