Brownian yet non-Gaussian diffusion in heterogeneous media: from superstatistics to homogenization

被引:43
|
作者
Postnikov, E. B. [1 ,2 ]
Chechkin, A. [3 ,4 ]
Sokolov, I. M. [5 ,6 ]
机构
[1] Kursk State Univ, Dept Theoret Phys, Radishcheva St 33, Kursk 305000, Russia
[2] Saratov State Natl Res Univ, Astrakhanskaya 83, Saratov 410012, Russia
[3] Univ Potsdam, Inst Phys & Astron, Karl Liebknecht Str 24-25, D-14476 Potsdam, Germany
[4] Akhiezer Inst Theoret Phys, Akad Skaya Str 1, UA-61108 Kharkov, Ukraine
[5] Humboldt Univ, Inst Phys, Newtonstr 15, D-12489 Berlin, Germany
[6] Humboldt Univ, IRIS Adlershof, Newtonstr 15, D-12489 Berlin, Germany
来源
NEW JOURNAL OF PHYSICS | 2020年 / 22卷 / 06期
基金
俄罗斯科学基金会;
关键词
diffusing diffusivity; Brownian yet non-Gaussian diffusion; position-dependent diffusion coefficient; superstatistics; homogenization; DYNAMICAL HETEROGENEITIES; ANOMALOUS DIFFUSION;
D O I
10.1088/1367-2630/ab90da
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss the situations under which Brownian yet non-Gaussian (BnG) diffusion can be observed in the model of a particle's motion in a random landscape of diffusion coefficients slowly varying in space (quenched disorder). Our conclusion is that such behavior is extremely unlikely in the situations when the particles, introduced into the system at random att= 0, are observed from the preparation of the system on. However, it indeed may arise in the case when the diffusion (as described in Ito interpretation) is observed under equilibrated conditions. This paradigmatic situation can be translated into the model of the diffusion coefficient fluctuating in time along a trajectory, i.e. into a kind of the 'diffusing diffusivity' model.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Brownian yet Non-Gaussian Diffusion: From Superstatistics to Subordination of Diffusing Diffusivities
    Chechkin, Aleksei V.
    Seno, Flavio
    Metzler, Ralf
    Sokolov, Igor M.
    PHYSICAL REVIEW X, 2017, 7 (02):
  • [2] Superstatistics and non-Gaussian diffusion
    Metzler, Ralf
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2020, 229 (05): : 711 - 728
  • [3] Superstatistics and non-Gaussian diffusion
    Ralf Metzler
    The European Physical Journal Special Topics, 2020, 229 : 711 - 728
  • [4] Disorder-induced Fickian, yet non-Gaussian diffusion in heterogeneous media
    Chakraborty, Indrani
    Roichman, Yael
    PHYSICAL REVIEW RESEARCH, 2020, 2 (02):
  • [5] Bounded diffusing diffusivities: Brownian yet non-Gaussian diffusion
    Luo, Chengrong
    Du, Luchun
    Guo, Zixuan
    Shi, Hongda
    Huang, Feijie
    Xiang, Youlin
    Guo, Wei
    PHYSICA SCRIPTA, 2024, 99 (11)
  • [6] Random coefficient autoregressive processes describe Brownian yet non-Gaussian diffusion in heterogeneous systems
    Slezak, Jakub
    Burnecki, Krzysztof
    Metzler, Ralf
    NEW JOURNAL OF PHYSICS, 2019, 21 (07):
  • [7] Non-Gaussian rotational diffusion in heterogeneous media
    Jeon, Heejin
    Cho, Hyun Woo
    Kim, Jeongmin
    Sung, Bong June
    PHYSICAL REVIEW E, 2014, 90 (04):
  • [8] Rectification and Non-Gaussian Diffusion in Heterogeneous Media
    Malgaretti, Paolo
    Pagonabarraga, Ignacio
    Miguel Rubi, J.
    ENTROPY, 2016, 18 (11):
  • [9] A model of non-Gaussian diffusion in heterogeneous media
    Lanoiselee, Yann
    Grebenkov, Denis S.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2018, 51 (14)
  • [10] Colossal Brownian yet non-Gaussian diffusion induced by nonequilibrium noise
    Bialas, K.
    Luczka, J.
    Haenggi, P.
    Spiechowicz, J.
    PHYSICAL REVIEW E, 2020, 102 (04)