A Cautionary note on modeling with fractional Levy flights

被引:9
|
作者
Heyde, C. C. [2 ,3 ]
Sly, Allan [1 ]
机构
[1] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA
[2] Columbia Univ, New York, NY 10027 USA
[3] Australian Natl Univ, Canberra, ACT 0200, Australia
关键词
self-similar; multifractal; fractional Levy flights;
D O I
10.1016/j.physa.2008.05.029
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Temporal scaling and infinite variance are two stylized features often seen together in times series of complex systems. We find that because of their infinite moments samples from fractional Levy flights produce bi-linear scaling functions which may be incorrectly attributed as evidence of multifractality. We argue that it is unnecessary to consider truncated fractional Levy flights which are inherently problematic. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:5024 / 5032
页数:9
相关论文
共 50 条
  • [1] CRIME MODELING WITH LEVY FLIGHTS
    Chaturapruek, Sorathan
    Breslau, Jonah
    Yazdi, Daniel
    Kolokolnikov, Theodore
    McCalla, Scott G.
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2013, 73 (04) : 1703 - 1720
  • [2] FRACTIONAL LAPLACIANS AND LEVY FLIGHTS IN BOUNDED DOMAINS
    Garbaczewski, Piotr
    ACTA PHYSICA POLONICA B, 2018, 49 (05): : 921 - 942
  • [3] A fractional diffusion equation to describe Levy flights
    Chaves, AS
    PHYSICS LETTERS A, 1998, 239 (1-2) : 13 - 16
  • [4] Internet Traffic Modeling with Levy Flights
    Terdik, Gyoergy
    Gyires, Tibor
    ICN 2008: SEVENTH INTERNATIONAL CONFERENCE ON NETWORKING, PROCEEDINGS, 2008, : 468 - +
  • [5] LEVY FLIGHTS, DYNAMICAL DUALITY AND FRACTIONAL QUANTUM MECHANICS
    Garbaczewski, Piotr
    ACTA PHYSICA POLONICA B, 2009, 40 (05): : 1353 - 1368
  • [6] Levy Flights and Fractal Modeling of Internet Traffic
    Terdik, Gyoergy
    Gyires, Tibor
    IEEE-ACM TRANSACTIONS ON NETWORKING, 2009, 17 (01) : 120 - 129
  • [7] Fractional dynamics on networks: Emergence of anomalous diffusion and Levy flights
    Riascos, A. P.
    Mateos, Jose L.
    PHYSICAL REVIEW E, 2014, 90 (03)
  • [8] Confinement of Levy flights in a parabolic potential and fractional quantum oscillator
    Kirichenko, E., V
    Stephanovich, V. A.
    PHYSICAL REVIEW E, 2018, 98 (05)
  • [9] Spatiotemporal dynamics in epidemic models with Levy flights: A fractional diffusion approach
    Zhao, Guangyu
    Ruan, Shigui
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2023, 173 : 243 - 277
  • [10] Fractional Fokker-Planck equation for Levy flights in nonhomogeneous environments
    Srokowski, Tomasz
    PHYSICAL REVIEW E, 2009, 79 (04):