Algebraicity of Hodge loci for variations of Hodge structure
被引:2
|
作者:
Cattani, Eduardo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Massachusetts, Dept Math & Stat, Amherst, MA 01002 USAUniv Massachusetts, Dept Math & Stat, Amherst, MA 01002 USA
Cattani, Eduardo
[1
]
Kaplan, Aroldo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Massachusetts, Dept Math & Stat, Amherst, MA 01002 USAUniv Massachusetts, Dept Math & Stat, Amherst, MA 01002 USA
Kaplan, Aroldo
[1
]
机构:
[1] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01002 USA
来源:
HODGE THEORY, COMPLEX GEOMETRY, AND REPRESENTATION THEORY
|
2014年
/
608卷
关键词:
INTEGRALS;
MONODROMY;
MANIFOLDS;
PERIODS;
D O I:
10.1090/conm/608/12176
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
These notes are intended to be a companion to Cattani, Deligne, and Kaplan (1995), where the algebraicity of the loci of Hodge classes is proven without appealing to the Hodge conjecture. We give somewhat simplified proofs in the case of variations of Hodge structures over curves and surfaces which may help to clarify the arguments, and discuss some current generalizations, consequences and conjectures based on them.
机构:Univ Grenoble 1, Dept Math, UMR 5582, CNRS,UJF, F-38402 St Martin Dheres, France
Peters, CAM
Steenbrink, JHM
论文数: 0引用数: 0
h-index: 0
机构:
Univ Grenoble 1, Dept Math, UMR 5582, CNRS,UJF, F-38402 St Martin Dheres, FranceUniv Grenoble 1, Dept Math, UMR 5582, CNRS,UJF, F-38402 St Martin Dheres, France