Origami-inspired miniature manipulator for teleoperated microsurgery

被引:135
|
作者
Suzuki, Hiroyuki [1 ]
Wood, Robert J. [2 ,3 ]
机构
[1] Sony Corp, Shinagawa Ku, Tokyo, Japan
[2] Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[3] Harvard Univ, Wyss Inst Biol Inspired Engn, Cambridge, MA 02138 USA
关键词
SURGICAL ROBOT; MECHANISM; DIAMETERS; FORCE;
D O I
10.1038/s42256-020-0203-4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Robot-assisted microsurgery promises high stability and accuracy for instance in eye- or neurosurgery applications. A new miniature robotics device, based on an origami-inspired design, can make complex 3D motions and reaches a precision of around 26 micrometres. The use of a structure with a remote fixed point around which a mechanism can rotate is called remote centre of motion (RCM). The technique is widely used in minimally invasive surgery to avoid excess force on the incision site during the robot's motion. Here we describe the design, fabrication and characterization of an origami-inspired miniature RCM manipulator for teleoperated microsurgery (the mini-RCM has mass 2.4 g and size 50 mm x 70 mm x 50 mm), which is actuated by three independently controlled linear actuators with concomitant sensing (each mini-LA has mass 0.41 g and size 28 mm x 7 mm x 3.6 mm). The mini-RCM has a payload capacity of approximately 27 mN and attains a positional precision of 26.4 mu m. We demonstrate its potential utility as a precise tool for teleoperated microsurgery by performing 0.5-mm-square tracing and micro-cannulation teleoperated microsurgical procedures under a microscope. Teleoperation using the mini-RCM reduced the deviation from the desired trajectory by 68% compared to manual operation. In addition, the mini-RCM allows gravity compensation and back drivability for safety. Its compact, simple structure facilitates manufacture.
引用
收藏
页码:437 / +
页数:13
相关论文
共 50 条
  • [1] Origami-inspired miniature manipulator for teleoperated microsurgery
    Hiroyuki Suzuki
    Robert J. Wood
    Nature Machine Intelligence, 2020, 2 : 437 - 446
  • [2] Design and Experiments of an Origami-Inspired Pneumatic Flexible Manipulator
    Guo, Benzhu
    Wang, Panding
    Zhao, Zeang
    Duan, Shengyu
    Lei, Hongshuai
    ACTA MECHANICA SOLIDA SINICA, 2023, 36 (02): : 254 - 261
  • [3] Design and Experiments of an Origami-Inspired Pneumatic Flexible Manipulator
    Benzhu Guo
    Panding Wang
    Zeang Zhao
    Shengyu Duan
    Hongshuai Lei
    Acta Mechanica Solida Sinica, 2023, 36 : 254 - 261
  • [4] Origami-inspired Prototyping
    Griffith, Saul
    Calisch, Sam
    Gilman, Tucker
    Gaebler, Frank
    R&D MAGAZINE, 2012, 54 (06): : 24 - 25
  • [5] Origami-inspired Medical Implants
    Saunders, Fenella
    AMERICAN SCIENTIST, 2018, 106 (03) : 143 - 143
  • [6] Origami-Inspired Printed Robots
    Onal, Cagdas D.
    Tolley, Michael T.
    Wood, Robert J.
    Rus, Daniela
    IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2015, 20 (05) : 2214 - 2221
  • [7] On dynamics of origami-inspired rod
    Berinskii, Igor
    Eremeyev, Victor A.
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2023, 193
  • [8] An origami-inspired energy absorber
    Khazaaleh, Shadi
    Dalaq, Ahmed S.
    Daqaq, Mohammed F.
    SMART MATERIALS AND STRUCTURES, 2024, 33 (04)
  • [9] ORICEPS: ORIGAMI-INSPIRED FORCEPS
    Edmondson, Bryce J.
    Bowen, Landen A.
    Grames, Clayton L.
    Magleby, Spencer P.
    Howell, Larry L.
    Bateman, Terri C.
    PROCEEDINGS OF THE ASME CONFERENCE ON SMART MATERIALS, ADAPTIVE STRUCTURES, AND INTELLIGENT SYSTEMS - 2013, VOL 1, 2014,
  • [10] An origami-inspired cargo drone
    Kornatowski, P. M.
    Mintchev, S.
    Floreano, D.
    2017 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2017, : 6855 - 6862