Unsteady one-dimensional thermoelastic cross-diffusion perturbations in a layer

被引:5
|
作者
Davydov, S. A. [1 ]
Zemskov, A. V. [1 ,2 ]
机构
[1] Natl Res Univ, Moscow Aviat Inst, 4 Volokolamskoe Highway, Moscow 125993, Russia
[2] Lomonosov Moscow State Univ, Inst Mech, 1 Michurinky Prosp, Moscow 119192, Russia
关键词
HALF-SPACE;
D O I
10.1088/1742-6596/1129/1/012009
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In the paper we present an algorithm for solving the unsteady problem of the thermoelastodiffusion perturbations propagation in a multicomponent layer. One-dimensional physicomechanical processes in the medium are described by the locally equilibrium model, including the equations of elastic medium motion, heat transfer and mass transfer with cross-diffusion effects. The unknown functions of displacement, temperature and concentration increments are sought in the integral form of convolution by time of the surface Green's functions and boundary conditions. To find the Green's functions, we use the integral Laplace transform with respect to time and the Fourier expansion into series by the spatial coordinate. It allows us to reduce the problem to system of linear algebraic equations. The originals of the Fourier series coefficients are found using known theorems and tables of operational calculus. Thus, the use of numerical algorithms is minimized and the surface Green's functions are found. Calculation example is presented.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Unsteady One-Dimensional Problem of Thermoelastic Diffusion for Homogeneous Multicomponent Medium with Plane Boundaries
    Vestyak, A. V.
    Davydova, S. A.
    Zemskov, A. V.
    Tarlakovskii, D. V.
    UCHENYE ZAPISKI KAZANSKOGO UNIVERSITETA-SERIYA FIZIKO-MATEMATICHESKIE NAUKI, 2018, 160 (01): : 183 - 195
  • [2] The One-dimensional Problem of Unsteady-related Elastic Diffusion Layer
    Gachkevich, A. R.
    Zemskov, A., V
    Tarlakovsky, D., V
    IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA, 2013, 13 (04): : 52 - 59
  • [3] Uniqueness of weak solutions to one-dimensional doubly degenerate cross-diffusion system
    Chen, Xiuqing
    Du, Bang
    APPLIED MATHEMATICS LETTERS, 2025, 166
  • [4] SMALL UNSTEADY PERTURBATIONS OF A PERMANENT ONE-DIMENSIONAL FLOW
    CARRIERE, P
    RECHERCHE AEROSPATIALE, 1976, (06): : 307 - 321
  • [5] Boundary stabilization of one-dimensional cross-diffusion systems in a moving domain: Linearized system
    Cauvin-Vila, Jean
    Ehrlacher, Virginie
    Hayat, Amaury
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 350 : 251 - 307
  • [6] Small Random Perturbations of One-Dimensional Diffusion Processes
    Xi Fubao Department of Applied Mathematics
    Acta Mathematica Sinica,English Series, 1998, (01) : 35 - 40
  • [7] Small Random Perturbations of One-Dimensional Diffusion Processes
    Xi Fubao Department of Applied Mathematics Beijing Institute of Technology Beijing China
    Acta Mathematica Sinica(New Series), 1998, 14 (01) : 35 - 40
  • [8] Small random perturbations of one-dimensional diffusion processes
    Xi, FB
    ACTA MATHEMATICA SINICA-NEW SERIES, 1998, 14 (01): : 35 - 40
  • [9] Modelling one-dimensional elastic diffusion processes in an orthotropic solid cylinder under unsteady volumetric perturbations
    Zverev, N. A.
    Zemskov, A., V
    Tarlakovskii, D., V
    VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2022, 26 (01): : 62 - 78
  • [10] Small random perturbations of one-dimensional diffusion processes
    Xi, Fubao
    Acta Mathematica Sinica, 1998, 14 (01): : 35 - 40