Asymptotic stability and uniform boundedness with respect to parameters for discrete non-autonomous periodic systems

被引:4
|
作者
Barbu, Dorel [1 ]
Buse, Constantin [1 ]
机构
[1] W Univ Timisoara, Dept Math, Timisoara, Romania
关键词
stable operators; boundedness; discrete Cauchy problems; Barbashin's type theorems;
D O I
10.1080/10236198.2011.561795
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let X be a complex Banach space and q >= 2 be a fixed integer number. Let U = {U(n, j)}(n >= j >= 0) subset of L(X) be a q-periodic discrete evolution family generated by the L(X)-valued, q-periodic sequence (A(n)). We prove that the solution of the following discrete problem y(n+1) = A(n)y(n) + e(i mu n)b, n is an element of Z(+), y(0) = 0 is bounded (uniformly with respect to the parameter mu is an element of R) for each vector b is an element of X if and only if the Poincare map U(q,0) is stable.
引用
收藏
页码:1435 / 1441
页数:7
相关论文
共 50 条