Color degree and heterochromatic cycles in edge-colored graphs

被引:28
|
作者
Li, Hao [1 ,2 ]
Wang, Guanghui [3 ]
机构
[1] Univ Paris 11, CNRS, UMR 8623, Lab Rech Informat, F-91405 Orsay, France
[2] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
[3] Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China
关键词
RAINBOW SUBGRAPHS; MATCHINGS;
D O I
10.1016/j.ejc.2012.06.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a graph G and an edge-coloring C of G, a heterochromatic cycle of G is a cycle in which any pair of edges have distinct colors. Let d(c)(v), named the color degree of a vertex v, be defined as the maximum number of edges incident with v that have distinct colors. In this paper, some color degree conditions for the existence of heterochromatic cycles are obtained. (c) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1958 / 1964
页数:7
相关论文
共 50 条
  • [1] Color degree and heterochromatic paths in edge-colored graphs
    Li, Shuo
    Yu, Dongxiao
    Yan, Jin
    ARS COMBINATORIA, 2014, 116 : 171 - 176
  • [2] The heterochromatic cycles in edge-colored graphs
    Yu, Dongxiao
    Liu, Guizhen
    Li, Shuo
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2009, 30 (1-2) : 171 - 179
  • [3] Color Degree and Heterochromatic Matchings in Edge-Colored Bipartite Graphs
    Li, Hao
    Wang, Guanghui
    UTILITAS MATHEMATICA, 2008, 77 : 145 - 154
  • [4] Color degree and alternating cycles in edge-colored graphs
    Wang, Guanghui
    Li, Hao
    DISCRETE MATHEMATICS, 2009, 309 (13) : 4349 - 4354
  • [5] Color degree and monochromatic degree conditions for short properly colored cycles in edge-colored graphs
    Fujita, Shinya
    Li, Ruonan
    Zhang, Shenggui
    JOURNAL OF GRAPH THEORY, 2018, 87 (03) : 362 - 373
  • [6] Heterochromatic matchings in edge-colored graphs
    Wang, Guanghui
    Li, Hao
    ELECTRONIC JOURNAL OF COMBINATORICS, 2008, 15 (01):
  • [7] The heterochromatic matchings in edge-colored bipartite graphs
    Li, Hao
    Li, Xuehang
    Liu, Guizhen
    Wang, Guanghui
    ARS COMBINATORIA, 2009, 93 : 129 - 139
  • [8] Color neighborhood union conditions for long heterochromatic paths in edge-colored graphs
    Chen, He
    Li, Xueliang
    ELECTRONIC JOURNAL OF COMBINATORICS, 2007, 14 (01):
  • [9] ALTERNATING CYCLES IN EDGE-COLORED GRAPHS
    WHITEHEAD, C
    JOURNAL OF GRAPH THEORY, 1989, 13 (04) : 387 - 391
  • [10] Rainbow cycles in edge-colored graphs
    Cada, Roman
    Kaneko, Atsushi
    Ryjacek, Zdenek
    Yoshimoto, Kiyoshi
    DISCRETE MATHEMATICS, 2016, 339 (04) : 1387 - 1392