One-time sintering process to modify xLi2MnO3 (1-x)LiMO2 hollow architecture and studying their enhanced electrochemical performances

被引:48
|
作者
Wang, Renheng [1 ]
Sun, Yiling [1 ]
Yang, Kaishuai [1 ]
Zheng, Junchao [2 ]
Li, Yan [1 ]
Qian, Zhengfang [1 ]
He, Zhenjiang [2 ,4 ]
Zhong, Shengkui [3 ]
机构
[1] Shenzhen Univ, Coll Phys & Optoelect Engn, Shenzhen 518060, Guangdong, Peoples R China
[2] Cent South Univ, Sch Met & Environm, Changsha 410083, Hunan, Peoples R China
[3] Hainan Trop Ocean Univ, Sch Marine Sci & Technol, Sanya 572000, Hainan, Peoples R China
[4] Donghua Univ, Coll Environm Sci & Engn, Shanghai 201620, Peoples R China
来源
JOURNAL OF ENERGY CHEMISTRY | 2020年 / 50卷 / 50期
基金
中国国家自然科学基金;
关键词
Lithium rich cathode materials; One-time sintering process; Coated and doped; Electrochemical performances; First-principles calculations; CATHODE MATERIALS; RECHARGEABLE LITHIUM; CO ELECTRODES; LI; SURFACE; MN; LINI0.5MN0.3CO0.2O2; SPINEL; ZRO2; NI;
D O I
10.1016/j.jechem.2020.03.042
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
To solve the critical problems of lithium rich cathode materials, e.g., structure instability and short cycle life, we have successfully prepared a ZrO2-coated and Zr-doping xLi(2)MnO(3)center dot(1-x)LiMO2 hollow architecture via one-time sintering process. The modified structural materials as lithium-ion cathodes present good structural stability and superior cycle performance in LIBs. The discharge capacity of the ZrO2-coated and Zr-doped hollow pristine is 220 mAh g(-1) at the 20th cycle at 0.2 C (discharge capacity loss, 2.7%) and 150 mAh g(-1) at the 100th cycle at 1 C (discharge capacity loss, 17.7%), respectively. However, hollow pristine electrode only delivers 203 mAh g(-1) at the 20th cycle at 0.2 C and 124 mAh g(-1) at the 100th cycle at 1 C, respectively, and the corresponding to capacity retention is 92.2% and 72.8%, respectively. Diffusion coefficients of modified hollow pristine electrode are much higher than that of hollow pristine electrode after 100 cycles (approach to 1.4 times). In addition, we simulate the adsorption reaction of HF on the surface of ZrO2-coated layer by the first-principles theory. The calculations prove that the adsorption energy of HF on the surface of ZrO2-coated layer is about -1.699 eV, and the ZrO2-coated layer could protect the hollow spherical xLi(2)MnO(3)center dot(1-x)LiMO2 from erosion by HF. Our results would be applicable for systematic amelioration of high-performance lithium rich material for anode with the respect of practical application. (C) 2020 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.
引用
收藏
页码:271 / 279
页数:9
相关论文
共 50 条
  • [1] One-time sintering process to modify xLi2MnO3(1-x)LiMO2 hollow architecture and studying their enhanced electrochemical performances
    Renheng Wang
    Yiling Sun
    Kaishuai Yang
    Junchao Zheng
    Yan Li
    Zhengfang Qian
    Zhenjiang He
    Shengkui Zhong
    Journal of Energy Chemistry, 2020, 50 (11) : 271 - 279
  • [2] Examining Hysteresis in Composite xLi2MnO3•(1-x)LiMO2 Cathode Structures
    Croy, Jason R.
    Gallagher, Kevin G.
    Balasubramanian, Mahalingam
    Chen, Zonghai
    Ren, Yang
    Kim, Donghan
    Kang, Sun-Ho
    Dees, Dennis W.
    Thackeray, Michael M.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (13): : 6525 - 6536
  • [3] Crystallographic analysis of xLi2MnO3•(1-x)LiMO2 material for lithium batteries.
    Burlaka, Luba
    Grinblat, Judith
    Amalraj, Francis
    Talianker, Michael
    Markovsky, Boris
    Aurbach, Doron
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2011, 67 : C698 - C698
  • [4] Synthesis of xLi2MnO3•(1-x)LiMO2 (M = Cr, Mn, Co, Ni) nanocomposites and their electrochemical properties
    Kim, Donghan
    Gim, Jihyeon
    Lim, Jinsub
    Park, Sangjun
    Kim, Jaekook
    MATERIALS RESEARCH BULLETIN, 2010, 45 (03) : 252 - 255
  • [5] Optimized activation of Li2MnO3 effectively boosting rate capability of xLi2MnO3•(1-x)LiMO2 cathode
    Hao, Youchen
    Liu, Wen
    Zhang, Qianyu
    Wang, Xianyou
    Yang, Hong
    Kou, Liang
    Tian, Zhanyuan
    Shao, Le
    Sari, Hirbod Maleki Kheimeh
    Wang, Jingjing
    Shan, Hui
    Li, Xifei
    NANO ENERGY, 2021, 88
  • [6] Surface/Interface Study on Full xLi2MnO3•(1-x)LiMO2 (M = Ni, Mn, Co)/Graphite Cells
    Boulet-Roblin, Lucien
    El Kazzi, Mario
    Novak, Petr
    Villevieille, Claire
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (07) : A1297 - A1300
  • [7] Synthesis of layered-layered xLi2MnO3•(1-x)LiMO2 (M = Mn, Ni, Co) nanocomposite electrodes materials by mechanochemical process
    Kim, Soo
    Kim, Chunjoong
    Noh, Jae-Kyo
    Yu, Seungho
    Kim, Su-Jin
    Chang, Wonyoung
    Choi, Won Chang
    Chung, Kyung Yoon
    Cho, Byung-Won
    JOURNAL OF POWER SOURCES, 2012, 220 : 422 - 429
  • [8] Stabilization of xLi2MnO3•(1-x)LiMO2 electrode surfaces (M = Mn, Ni, Co) with mildly acidic, fluorinated solutions
    Kang, S. -H.
    Thackeray, M. M.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2008, 155 (04) : A269 - A275
  • [9] xLi2MnO3•(1-x)LiMO2 blended with LiFePO4 to achieve high energy density and pulse power capability
    Gallagher, Kevin G.
    Kang, Sun-Ho
    Park, Sei Ung
    Han, Soo Young
    JOURNAL OF POWER SOURCES, 2011, 196 (22) : 9702 - 9707
  • [10] Advances in Stabilizing 'Layered-Layered' xLi2MnO3 • (1-x)LiMO2 (M=Mn, Ni, Co) Electrodes with a Spinel Component
    Long, Brandon R.
    Croy, Jason R.
    Park, Joong Sun
    Wen, Jianguo
    Miller, Dean J.
    Thackeray, Michael M.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2014, 161 (14) : A2160 - A2167