Large classes of quantum scarred Hamiltonians from matrix product states

被引:66
|
作者
Moudgalya, Sanjay [1 ]
O'Brien, Edward [2 ]
Bernevig, B. Andrei [1 ]
Fendley, Paul [2 ,3 ]
Regnault, Nicolas [1 ,4 ]
机构
[1] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[2] Clarendon Lab, Rudolf Peierls Ctr Theoret Phys, Parks Rd, Oxford OX1 3PU, England
[3] All Souls Coll, Oxford OX1 4AL, England
[4] Sorbonne Univ, Ecole Normale Super, Lab Phys, Univ PSL,CNRS,Univ Paris Diderot,Sorbonne Paris C, Paris, France
基金
英国工程与自然科学研究理事会; 美国国家科学基金会;
关键词
BOND GROUND-STATES; SPIN CHAIN; SYMMETRY; BREAKING;
D O I
10.1103/PhysRevB.102.085120
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Motivated by the existence of exact many-body quantum scars in the Affleck-Kennedy-Lieb-Tasaki (AKLT) chain, we explore the connection between matrix product state (MPS) wave functions and many-body quantum scarred Hamiltonians. We provide a method to systematically search for and construct parent Hamiltonians with towers of exact eigenstates composed of quasiparticles on top of an MPS wave function. These exact eigenstates have low entanglement in spite of being in the middle of the spectrum, thus violating the strong eigenstate thermalization hypothesis. Using our approach, we recover the AKLT chain starting from the MPS of its ground state, and we derive the most general nearest-neighbor Hamiltonian that shares the AKLT quasiparticle tower of exact eigenstates. We further apply this formalism to other simple MPS wave functions, and derive families of Hamiltonians that exhibit AKLT-like quantum scars. As a consequence, we also construct a scar-preserving deformation that connects the AKLT chain to the integrable spin-1 pure biquadratic model. Finally, we also derive other families of Hamiltonians that exhibit types of exact quantum scars, including a U(1)-invariant perturbed Potts model.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Extracting Quantum Many-Body Scarred Eigenstates with Matrix Product States
    Zhang, Shun-Yao
    Yuan, Dong
    Iadecola, Thomas
    Xu, Shenglong
    Deng, Dong-Ling
    PHYSICAL REVIEW LETTERS, 2023, 131 (02)
  • [2] Frustration Free Gapless Hamiltonians for Matrix Product States
    C. Fernández-González
    N. Schuch
    M. M. Wolf
    J. I. Cirac
    D. Pérez-García
    Communications in Mathematical Physics, 2015, 333 : 299 - 333
  • [3] Frustration Free Gapless Hamiltonians for Matrix Product States
    Fernandez-Gonzalez, C.
    Schuch, N.
    Wolf, M. M.
    Cirac, J. I.
    Perez-Garcia, D.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 333 (01) : 299 - 333
  • [4] Perturbation Theory for Parent Hamiltonians of Matrix Product States
    Oleg Szehr
    Michael M. Wolf
    Journal of Statistical Physics, 2015, 159 : 752 - 771
  • [5] Perturbation Theory for Parent Hamiltonians of Matrix Product States
    Szehr, Oleg
    Wolf, Michael M.
    JOURNAL OF STATISTICAL PHYSICS, 2015, 159 (04) : 752 - 771
  • [6] Large-Scale Quantum Dynamics with Matrix Product States
    Baiardi, Alberto
    Reiher, Markus
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2019, 15 (06) : 3481 - 3498
  • [7] Matrix product states: Symmetries and two-body Hamiltonians
    Sanz, M.
    Wolf, M. M.
    Perez-Garcia, D.
    Cirac, J. I.
    PHYSICAL REVIEW A, 2009, 79 (04):
  • [8] Matrix Product States for Quantum Metrology
    Jarzyna, Marcin
    Demkowicz-Dobrzanski, Rafal
    PHYSICAL REVIEW LETTERS, 2013, 110 (24)
  • [9] Matrix Product States with Large Sites
    Larsson, Henrik R.
    Zhai, Huanchen
    Gunst, Klaas
    Chan, Garnet Kin-Lic
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2022, 18 (02) : 749 - 762
  • [10] Matrix product states for trial quantum Hall states
    Estienne, B.
    Papic, Z.
    Regnault, N.
    Bernevig, B. A.
    PHYSICAL REVIEW B, 2013, 87 (16)