Automatic Modeling with Local Model Networks for Benchmark Processes

被引:9
|
作者
Belz, Julian [1 ]
Muenker, Tobias [1 ]
Heinz, Tim O. [1 ]
Kampmann, Geritt [1 ]
Nelles, Oliver [1 ]
机构
[1] Univ Siegen, Automat Control Mechatron, Siegen, Germany
来源
IFAC PAPERSONLINE | 2017年 / 50卷 / 01期
关键词
Local Model Network; LMN; HILOMOT; LOLIMOT; System Identification; Benchmark Process; Bouc-Wen; Wiener-Hammerstein; Cascaded Tanks; Nonlinear Dynamic Systems; NARX; NFIR; NOBF; SYSTEM-IDENTIFICATION;
D O I
10.1016/j.ifacol.2017.08.089
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper an automated model generation framework is used to identify three nonlinear dynamic benchmark processes. The nonlinearity is approximated using tree-based local model networks (LMN) with external dynamics, which are represented by three different approaches: NARX, NFIR and NOBF. The automated method assumes no prior knowledge about the process, and aims to be a ready-to-use tool for system identification. Results are given for the different approaches and benchmark processes. The importance of the choice of training data for a good generalizing model performance is discussed. (C) 2017, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:470 / 475
页数:6
相关论文
共 50 条
  • [1] Benchmark problems for dynamic modeling of intracellular processes
    Hass, Helge
    Loos, Carolin
    Raimundez-Alvarez, Elba
    Timmer, Jens
    Hasenauer, Jan
    Kreutz, Clemens
    BIOINFORMATICS, 2019, 35 (17) : 3073 - 3082
  • [2] Automatic verification of parameterized networks of processes
    Lesens, D
    Halbwachs, N
    Raymond, P
    THEORETICAL COMPUTER SCIENCE, 2001, 256 (1-2) : 113 - 144
  • [3] Automatic mapping and modeling of human networks
    Pentland, Alex
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 378 (01) : 59 - 67
  • [4] SYSTEM FOR AUTOMATIC MODELING OF ELECTRIC NETWORKS
    OSMOLOVSKIY, SA
    MONAKHOV, VE
    TELECOMMUNICATIONS AND RADIO ENGINEERING, 1973, 27 (05) : 37 - 41
  • [5] Local Optima Networks of the Black Box Optimisation Benchmark Functions
    Mitchell, Paul
    Ochoa, Gabriela
    Chassagne, Romain
    PROCEEDINGS OF THE 2023 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2023 COMPANION, 2023, : 2072 - 2080
  • [6] An Automatic Modeling Method for Web Service Business Processes towards CPN Model Checking
    Sun, Tao
    Zuo, Kangshuai
    Zhong, Wenjie
    2022 IEEE INTL CONF ON PARALLEL & DISTRIBUTED PROCESSING WITH APPLICATIONS, BIG DATA & CLOUD COMPUTING, SUSTAINABLE COMPUTING & COMMUNICATIONS, SOCIAL COMPUTING & NETWORKING, ISPA/BDCLOUD/SOCIALCOM/SUSTAINCOM, 2022, : 715 - 721
  • [7] Automatic complex for modeling and forecasting atmospheric processes
    Khutorova, O. G.
    Teptin, G. M.
    Khutorov, V. E.
    Dementyev, V. V.
    Zhikh, S. S.
    Krasnov, V. I.
    21ST INTERNATIONAL SYMPOSIUM ON ATMOSPHERIC AND OCEAN OPTICS: ATMOSPHERIC PHYSICS, 2015, 9680
  • [8] Automatic control of manufacturing processes: A model
    Lyutov A.G.
    Ryabov Y.V.
    Russian Engineering Research, 2016, 36 (11) : 934 - 939
  • [9] Benchmark model to assess community structure in evolving networks
    Granell, Clara
    Darst, Richard K.
    Arenas, Alex
    Fortunato, Santo
    Gomez, Sergio
    PHYSICAL REVIEW E, 2015, 92 (01)
  • [10] A benchmark study of convolutional neural networks in fully automatic segmentation of aortic root
    Yang, Tingting
    Zhu, Guangyu
    Cai, Li
    Yeo, Joon Hock
    Mao, Yu
    Yang, Jian
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2023, 11