A telescope for high-dimensional data

被引:0
|
作者
Shneiderman, B [1 ]
机构
[1] Univ Maryland, Human Comp Interact Lab, College Pk, MD 20742 USA
关键词
D O I
10.1109/MCSE.2006.21
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Rank-by-feature framework is a new approach for visual data analysis, which allows researchers to adjust control to specify what they are looking for in their research to find a cure for muscular dystrophy. This system enables the researchers to spot strong relationships among variables, find tight data clusters, or identify unexpected gaps. The addition of this system to Hierarchical Clustering Explorer (HCE) dramatically speeds up exploration of high-dimensional data. The emergence of information visualization user interfaces that combine data mining and statistical methods is bringing new methods and potent tools to many analysts' desktops.
引用
收藏
页码:48 / 53
页数:6
相关论文
共 50 条
  • [1] High-dimensional data
    Geubbelmans, Melvin
    Rousseau, Axel-Jan
    Valkenborg, Dirk
    Burzykowski, Tomasz
    AMERICAN JOURNAL OF ORTHODONTICS AND DENTOFACIAL ORTHOPEDICS, 2023, 164 (03) : 453 - 456
  • [2] High-dimensional data
    Amaratunga, Dhammika
    Cabrera, Javier
    JOURNAL OF THE NATIONAL SCIENCE FOUNDATION OF SRI LANKA, 2016, 44 (01): : 3 - 9
  • [3] BUILDING A TELESCOPE TO LOOK INTO HIGH-DIMENSIONAL IMAGE SPACES
    Hill, Mitch
    Nijkamp, Erik
    Zhu, Song-Chun
    QUARTERLY OF APPLIED MATHEMATICS, 2019, 77 (02) : 269 - 321
  • [4] On Criticality in High-Dimensional Data
    Saremi, Saeed
    Sejnowski, Terrence J.
    NEURAL COMPUTATION, 2014, 26 (07) : 1329 - 1339
  • [5] High-Dimensional Data Bootstrap
    Chernozhukov, Victor
    Chetverikov, Denis
    Kato, Kengo
    Koike, Yuta
    ANNUAL REVIEW OF STATISTICS AND ITS APPLICATION, 2023, 10 : 427 - 449
  • [6] High-dimensional data clustering
    Bouveyron, C.
    Girard, S.
    Schmid, C.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 52 (01) : 502 - 519
  • [8] High-dimensional data visualization
    Tang, Lin
    NATURE METHODS, 2020, 17 (02) : 129 - 129
  • [9] High-dimensional data visualization
    Lin Tang
    Nature Methods, 2020, 17 : 129 - 129
  • [10] High-dimensional Data Cubes
    John, Sachin Basil
    Koch, Christoph
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2022, 15 (13): : 3828 - 3840