Bayesian information criterion based data-driven state of charge estimation for lithium-ion battery

被引:18
|
作者
Liu, Xingtao [1 ]
Yang, Jiacheng [1 ]
Wang, Li [1 ]
Wu, Ji [1 ,2 ]
机构
[1] Hefei Univ Technol, Sch Automot & Transportat Engn, Hefei 230009, Peoples R China
[2] Engn Res Ctr Intelligent Transportat & Cooperat Ve, Hefei 230009, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium -ion battery; State of charge estimation; Data; -driven; Bayesian information criterion; Support vector regression algorithm; OF-CHARGE; SYSTEM;
D O I
10.1016/j.est.2022.105669
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Accurate state of charge (SOC) estimation is essential for the safe and reliable operation of Li-ion batteries. To solve the problem of poor generalisation caused by over-fitting, this paper presents a combination algorithm based on feature selection to estimate battery SOC. Firstly, a portion of the features is extracted from the extended Kalman filtering (EKF) results. It forms the set of features to be selected with four other measured features. Secondly, the optimal feature subset is adopted by designing a wrapped feature screening framework based on the Bayesian information criterion (BIC). Finally, the selected combination of features is adopted to train the support vector regression (SVR) model, which is applied to the battery SOC estimation. The experimental results reveal that the combination strategy of EKF and SVR improves the accuracy of SOC estimation. The optimal SVR model based on the feature selection criterion shows better generalisation. Better estimation results in four driving conditions are achieved, and the root-mean-square error of the battery SOC estimation is decreased by at least 64.1 % and 56.5 % compared to the EKF algorithm and SVR algorithm driven by full feature, respectively.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Data-Driven Estimation of Remaining Useful Lifetime and State of Charge for Lithium-Ion Battery
    Du, Zhekai
    Zuo, Lin
    Li, Jingjing
    Liu, Yu
    Shen, Heng Tao
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2022, 8 (01) : 356 - 367
  • [2] Data-driven state of charge estimation for lithium-ion battery packs based on Gaussian process regression
    Deng, Zhongwei
    Hu, Xiaosong
    Lin, Xianke
    Che, Yunhong
    Xu, Le
    Guo, Wenchao
    ENERGY, 2020, 205
  • [3] State of charge estimation for lithium-ion batteries based on battery model and data-driven fusion method
    Hou, Jiayang
    Xu, Jun
    Lin, Chuanping
    Jiang, Delong
    Mei, Xuesong
    ENERGY, 2024, 290
  • [4] Data-Driven Discovery of Lithium-Ion Battery State of Charge Dynamics
    Rodriguez, Renato
    Ahmadzadeh, Omidreza
    Wang, Yan
    Soudbakhsh, Damoon
    JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2024, 146 (01):
  • [5] A data-driven coulomb counting method for state of charge calibration and estimation of lithium-ion battery
    Shuzhi, Zhang
    Xu, Guo
    Xiaoxin, Dou
    Xiongwen, Zhang
    SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2020, 40
  • [6] Comparative Study-Based Data-Driven Models for Lithium-Ion Battery State-of-Charge Estimation
    Hussein, Hossam M.
    Esoofally, Mustafa
    Donekal, Abhishek
    Rafin, S. M. Sajjad Hossain
    Mohammed, Osama
    BATTERIES-BASEL, 2024, 10 (03):
  • [7] State of Charge Estimation by Joint Approach With Model-Based and Data-Driven Algorithm for Lithium-Ion Battery
    Shi, Qin
    Jiang, Zhengxin
    Wang, Zhi
    Shao, Xingguo
    He, Lin
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [8] Data-driven state of health estimation for lithium-ion battery based on voltage variation curves
    Wu, Jiang
    Liu, Zelong
    Zhang, Yan
    Lei, Dong
    Zhang, Bo
    Cao, Wen
    JOURNAL OF ENERGY STORAGE, 2023, 73
  • [9] Data-driven state-of-health estimation for lithium-ion battery based on aging features
    Li, Xining
    Ju, Lingling
    Geng, Guangchao
    Jiang, Quanyuan
    ENERGY, 2023, 274
  • [10] Data-Driven Methods for the State of Charge Estimation of Lithium-Ion Batteries: An Overview
    Eleftheriadis, Panagiotis
    Giazitzis, Spyridon
    Leva, Sonia
    Ogliari, Emanuele
    FORECASTING, 2023, 5 (03): : 576 - 599