Homogeneity properties of some l1-spaces

被引:0
|
作者
Ovchinnikov, S [1 ]
机构
[1] San Francisco State Univ, Dept Math, San Francisco, CA 94132 USA
关键词
Computational Mathematic; Homogeneity Property; Homogeneous Subspace;
D O I
10.1007/s00454-005-1217-8
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let M be a family of subspaces of a metric space X. The space X is M-homogeneous if any isometry between two subspaces in M can be extended to an isometry of X. In the case when M is the family of all subspaces of X, the space X is said to be fully homogeneous. We show that the space L-n, where L is a fully homogeneous subspace of R, is R-homogeneous where R is the family of subspaces that are products of subsets of L.
引用
收藏
页码:301 / 310
页数:10
相关论文
共 50 条
  • [2] ELEMENTARY L1-SPACES
    MACCOLL, LA
    TRANSACTIONS OF THE NEW YORK ACADEMY OF SCIENCES, 1951, 14 (01): : 35 - 39
  • [3] Geometric description of L1-spaces
    Ibragimov M.M.
    Kudaibergenov K.K.
    Russian Mathematics, 2013, 57 (9) : 16 - 21
  • [4] POSITIVE CONTRACTIONS OF L1-SPACES
    AKCOGLU, MA
    MATHEMATISCHE ZEITSCHRIFT, 1975, 143 (01) : 5 - 13
  • [5] Some remarks on tangent martingale difference sequences in L1-spaces
    Cox, Sonja
    Veraar, Mark
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2007, 12 : 421 - 433
  • [6] MINIMAL PROJECTIONS IN L1-SPACES
    FRANCHETTI, C
    CHENEY, EW
    DUKE MATHEMATICAL JOURNAL, 1976, 43 (03) : 501 - 510
  • [7] Geometric characterization of L1-spaces
    Yadgorov, Normuxammad
    Ibragimov, Mukhtar
    Kudaybergenov, Karimbergen
    STUDIA MATHEMATICA, 2013, 219 (02) : 97 - 107
  • [8] Continuity properties of Markov semigroups and their restrictions to invariant L1-spaces
    Sander C. Hille
    Daniël T. H. Worm
    Semigroup Forum, 2009, 79 : 575 - 600
  • [9] Homogeneity Properties of Some ℓ1-Spaces
    Sergei Ovchinnikov
    Discrete & Computational Geometry, 2006, 35 : 301 - 310
  • [10] An isomorphic characterization of L1-spaces
    Timofte, Vlad
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2007, 18 (04): : 629 - 640