Learning Target Dynamics While Tracking Using Gaussian Processes

被引:9
|
作者
Veiback, Clas [1 ]
Olofsson, Jonatan [1 ]
Lauknes, Tom Rune [2 ]
Hendeby, Gustaf [1 ]
机构
[1] Linkoping Univ, Dept Elect Engn, S-58183 Linkoping, Sweden
[2] Norwegian Res Ctr, N-9019 Tromso, Norway
基金
欧盟地平线“2020”;
关键词
Gaussian processes; Computational modeling; Adaptation models; Target tracking; Estimation; Time-varying systems; Extended Kalman filter (EKF); identification; online learning; sparse Gaussian process (GP); target tracking; PROCESS REGRESSION;
D O I
10.1109/TAES.2019.2948699
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Tracked targets often exhibit common behaviors due to influences from the surrounding environment, such as wind or obstacles, which are usually modeled as noise. Here, these influences are modeled using sparse Gaussian processes that are learned online together with the state inference using an extended Kalman filter. The method can also be applied to time-varying influences and identify simple dynamic systems. The method is evaluated with promising results in a simulation and a real-world application.
引用
收藏
页码:2591 / 2602
页数:12
相关论文
共 50 条
  • [1] Extended Target Tracking Using Gaussian Processes
    Wahlstrom, Niklas
    Ozkan, Emre
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2015, 63 (16) : 4165 - 4178
  • [2] Extended Target Tracking Using Gaussian Processes with High-Resolution Automotive Radar
    Thormann, Kolja
    Honer, Jens
    Baum, Marcus
    2018 21ST INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2018, : 1764 - 1770
  • [3] Asymmetric kernel in Gaussian Processes for learning target variance
    Pintea, S. L.
    van Gemert, J. C.
    Smeulders, A. W. M.
    PATTERN RECOGNITION LETTERS, 2018, 108 : 70 - 77
  • [4] Three-Dimensional Extended Object Tracking and Shape Learning Using Gaussian Processes
    Kumru, Murat
    Ozkan, Emre
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2021, 57 (05) : 2795 - 2814
  • [5] Backstepping Tracking Control Using Gaussian Processes With Event-Triggered Online Learning
    Jiao, Junjie
    Capone, Alexandre
    Hirche, Sandra
    IEEE CONTROL SYSTEMS LETTERS, 2022, 6 : 3176 - 3181
  • [6] Learning Non-stationary System Dynamics Online Using Gaussian Processes
    Rottmann, Axel
    Burgard, Wolfram
    PATTERN RECOGNITION, 2010, 6376 : 192 - 201
  • [7] A Learning Gaussian Process Approach for Maneuvering Target Tracking and Smoothing
    Aftab, Waqas
    Mihaylova, Lyudmila
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2021, 57 (01) : 278 - 292
  • [8] The GMPHD Filter for Swarm Target Tracking Based on Gamma Gaussian Processes
    Cao, Xi
    Tian, Yunlian
    Lin, Yiru
    Liang, Yunfei
    Yi, Wei
    2024 IEEE RADAR CONFERENCE, RADARCONF 2024, 2024,
  • [9] Spatiotemporal Multisensor Calibration via Gaussian Processes Moving Target Tracking
    Persic, Juraj
    Petrovic, Luka
    Markovic, Ivan
    Petrovic, Ivan
    IEEE TRANSACTIONS ON ROBOTICS, 2021, 37 (05) : 1401 - 1415
  • [10] Zoom on target while tracking
    Micheloni, C
    Foresti, GL
    2005 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), VOLS 1-5, 2005, : 3681 - 3684